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Chapter 1

Real Numbers

1.1 Introduction of real numbers

The most important notion in mathematics is the notion of numbers. Numbers

are classified and special sets of numbers are named based on several properties

of the numbers. The most important set of numbers is the set of real numbers.

A real number is a number which can be written as a decimal. Decimals might be

finite decimals and infinite decimals, which are either infinite repeating decimals

or infinite non-repeating decimals. Finite and infinite repeating decimals are also

called periodic decimals, meanwhile infinite non-repeating decimals are called

non-periodic decimals.

Example. Finite decimals are like

3

2
= 1.5

1

25
= 0.04

infinite repeating decimals are like

2

3
= 0.6666 . . .

1

7
= 0.142857142857 . . .

44

175
= 0.25142857142857 . . .

3
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and infinite non-repeating decimals are like

√
2 = 1.4142135623730 . . . π = 3.141592653589793238462643 . . .

On the set of real numbers there are defined several operations. The two most

important operations are addition and multiplication of real numbers. In the

sequel we assume that addition and multiplication of real numbers is well known

for the reader.

Notation. The set of real numbers is denoted by R.

1.2 Axiomatic definition of real numbers*

Definition 1.1. Let F be a non-empty set with two operations + and · with the

following properties

(A1) For all a, b, c ∈ F , (a + b) + c = a + (b + c). (+ associative)

(A2) For all a, b ∈ F , a + b = b + a. (+ commutative)

(A3) There exists 0 ∈ F such that for all a ∈ F , a + 0 = a. (Zero)

(A4) For all a ∈ F , there exists (−a) ∈ F such that a + (−a) = 0. (Negatives)

(M1) For all a, b, c ∈ F , (ab)c = a(bc). (· associative)

(M2) For all a, b ∈ F , ab = ba. (· commutative)

(M3) There exists 1 ∈ F , 1 6= 0, s.t. for all a ∈ F , a1 = a. (Unit)

(M4) For all 0 6= a ∈ F , there exists (1/a) ∈ F such that a·(1/a) = 1. (Reciprocals)

(DL) For all a, b, c ∈ F , a(b + c) = ab + ac. (Distributive)

Further, there exists a relation ≤ on F such that

(O1) For all a, b ∈ F , either a ≤ b or b ≤ a.

(O2) For all a, b ∈ F , if a ≤ b and b ≤ a, then a = b.

(O3) For all a, b, c ∈ F , if a ≤ b and b ≤ c, then a ≤ c.
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(O4) For all a, b, c ∈ F , if a ≤ b, then a + c ≤ b + c.

(O5) For all a, b, c ∈ F , if a ≤ b and 0 ≤ c, then ac ≤ bc.

Finally, every nonempty subset of F that has an upper bound also has a least

upper bound (supremum). In this case F = R.

More precisely it can be shown that the axioms above determine R completely,

that is, any other mathematical object with the same properties must be essentially

the same as R.

1.3 Properties of real numbers

The below basic properties of addition and multiplication of real numbers are so-

called axioms, so they are assumed to be self-evidently true and there is no need

to prove them.

Definition 1.2. (Axioms of the Real Numbers)

Let a, b and c be arbitrary real numbers. Then the following properties are true:
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Closure properties a + b is a real number

ab is a real number

Commutative properties a + b = b + a

ab = ba

Associative properties (a + b) + c = a + (b + c)

(ab)c = a(bc)

Identity properties There exists a unique real number 0 called zero

such that

a + 0 = a and 0 + a = a

There exists a unique real number 1 called one

such that

a · 1 = a and 1 · a = a

Inverse properties There exists a unique real number −a called

the additive inverse of a such that

a + (−a) = 0 and (−a) + a = 0

If a 6= 0 then there exists a unique real number 1
a

called the multiplicative inverse of a such that

a · 1
a

= 1 and 1
a
· a = 1

Distributive property a(b + c) = ab + ac

Remark. The additive inverse of a is also called the negative of a or the opposite

of a, and the multiplicative inverse of a is also called the reciprocal of a.

Remark. Do not confuse ”the negative of a number” with ”a negative number”!

Notation. The reciprocal of a is also denoted by a−1.

Theorem 1.3. (Properties of the real numbers) Let a, b and c be arbitrary

real numbers. Then the following properties are true:
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Substitution property If a = b then a and b may replace each other in any

expression.

Addition property If a = b then

a + c = b + c

Multiplication property If a = b then

ac = bc

Theorem 1.4. (Properties of zero)

For all real numbers a and b we have

1). a · 0 = 0,

2). ab = 0 if and only if a = 0 or b = 0.

Theorem 1.5. (Properties of the additive inverse) For all real numbers a

and b we have

1). −(a + b) = (−a) + (−b)

2). −(−a) = a

3). (−a)b = −(ab)

4). a(−b) = −(ab)

5). (−a)(−b) = ab

There are other operations on real numbers which may be defined using the

addition and multiplication. The subtraction of two real numbers is defined by the

addition of the additive inverse of the second to the first. Similarly, the division

of a real number by a non-zero real number is defined in terms of multiplication.
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Definition 1.6. (Definition of subtraction and division) For all real numbers

a and b we define the difference a − b by

a − b = a + (−b)

Similarly, for all real numbers a and b 6= 0 we define the quotient a
b

by

a

b
= a · b−1.

Notation. The quotient a
b

is also denoted by a : b.

Remark. Clearly, you may divide zero by any nonzero number, and the result is

zero:
0

3
= 0,

0

−π
= 0,

0

2
√

3
= 0.

On the other hand dividing any number by zero is meaningless.

Theorem 1.7. (Properties of subtraction and division of real numbers)

Let a, b, c, d be arbitrary real numbers, and suppose that all the denominators in

the formulas below are non-zero:

1). 0 − a = −a

2). a − 0 = a

3). −(a + b) = −a − b

4). −(a − b) = b − a

5). a
b

= c
d

if and only if ad = bc

6). −a
b

= −a
b

= a
−b

7). −a
−b

= a
b
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8). ac
bc

= a
b

9). a
b
· c

d
= ac

bd

10). a
b

: c
d

=
a

b
c

d

= a
b
· d

c

11). a
b

+ c
b

= a+c
b

12). a
b

+ c
d

= ad+bc
bd

Theorem 1.8. (Cancelation rule of addition) Let a, b, c be arbitrary real num-

bers. If a + c = b + c, then a = b.

Theorem 1.9. (Cancelation rule of multiplication) Let a, b, c be arbitrary

real numbers, with c 6= 0. If ac = bc, then a = b.

Later we shall define two other operations of the real numbers: exponentiation

and taking roots.

1.4 The order of operations and grouping sym-

bols

If no parentheses and fraction lines are present then we first have to do all expo-

nentiations and taking roots, then multiplications and divisions working from left

to right, and then we have to do all the additions and subtractions working from

left to right.

To change the order of the operations we use grouping symbols: parentheses

( ), square brackets [ ], and braces { }. Further, we remark that root symbols and

fraction lines also work as grouping symbols.

Order of operations:



10 CHAPTER 1. REAL NUMBERS

I. If no fraction lines and grouping symbols are present:

(1) First do all exponentiations and taking roots in the order they appear,

working from left to right,

(2) Then do all multiplications and divisions in the order they appear,

working from left to right.

(3) Finally do all additions and subtractions in the order they appear, wor-

king from left to right.

II. If there are fraction lines and/or grouping symbols present:

(1) Work separately above and below any fraction line, and below any root

sign.

(2) Use the rules of point I. within each parentheses, square brackets and

braces (and any other grouping symbols) starting with the innermost

and working outwards.

Example.

1 + 2 · 3 = 1 + 6 = 7 but (1 + 2) · 3 = 3 · 3 = 9

Example.

7 +
√

3 + 2 · 3
(3 +

√
4) · 2

=
7 +

√
3 + 6

(3 + 2) · 2 =
7 +

√
9

5 · 2 =
7 + 3

10
=

10

10
= 1

Remark. In mathematics we try to avoid the use of slash indicating division.

However, if used, then it means just a sign of division (:), and not a fraction line.

This means that

1/2 · 4 = 1 : 2 · 4 = 0.5 · 4 = 2.
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1.5 Special Subsets of the Set of Real Numbers

During the history of mathematics the real numbers were not the first set of

numbers which appeared. It seems that the set of natural numbers (1, 2, 3, . . . )

developed together with the human race, being with us from the beginning. In

contrast already zero, and the negative integers are recent inventions in mathema-

tics. Partly, they are results of the ”wish” to be able to subtract any two natural

numbers. To be able to divide any integer by any non-zero integer the set of rati-

onal numbers has been introduced as the set of all quotients of integer numbers.

However, these ”do not fill completely” the coordinate line, so mathematicians

introduced the set of real numbers, containing the set of rational numbers, and

the set of irrational numbers, which is the set of all non-rational real numbers.

Here we summarize the definition of these sets:
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The set of natural numbers contains all numbers which can be obtained

by successively adding several copies of 1:

N := {1, 2, 3, . . . }

The set of integer numbers contains the natural numbers, their ne-

gatives and zero:

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }

The set of rational numbers contains all numbers which can be ob-

tained by dividing an integer by a non-zero integer:

Q :=
{

a
b
|a, b ∈ Z, b 6= 0

}

The set of irrational numbers contains all real numbers which are not

rational numbers:

R \ Q := {r ∈ R|r 6∈ Q}

Definition 1.10. (Positive and negative real numbers) Zero is by definition

neither positive nor negative. Real numbers which have their decimal form starting

with a natural number (e.g. 3.141592....) or which start with zero (e.g. 0.0012....)

are called positive numbers, and their additive inverses are called negative

numbers.

Remark. (Properties of the sign of real numbers)

• Zero is neither positive nor negative.
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• All natural numbers are positive.

• The additive inverse of a natural number is negative.

• A rational number is positive if

– both the numerator and the denominator is positive

– both the numerator and the denominator is negative

• A rational number is negative if

– the numerator is negative and the denominator is positive

– the numerator is positive and the denominator is negative

1.6 The Real Number Line and Ordering of the

Real Numbers

The real number line is a geometric representation of the set of real numbers.

In many cases this geometric representation helps us to understand the structure

of the set of real numbers. This is the case especially with the ordering of real

numbers.

Definition 1.11. (The Real Number Line) Take a straight line (for simplicity

draw it horizontally) and fix any point on the line to represent 0. This point will

also be called the origin. Then choose any point on the right of this point and

label it by 1. This way using the distance of these two points we have fixed a unit

measure. With the help of this we can locate 2, 3, 4 . . . to the right of the origin and

using central symmetry through the origin we also fix the negatives of the natural
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numbers (i.e. −1,−2,−3, . . . ) on the left of the origin. Dividing the segments

between two consecutive integers we also locate the rational numbers which are

not integers (like 1
4
,−3

5
, 111

31
). Irrational numbers can be located by computing

their decimal representation to any desired accuracy.

The number corresponding to a point is called the coordinate of the point, and

the correspondence between the points on a line and the real numbers is called a

coordinate system.

Now we define a ”natural” ordering among the real numbers. There are may

ways to define this ordering. The easiest way is to say that the real number a is

larger then b if a is to the right of b on the coordinate line. Another way to define

this ordering is the following: first define the concept of positive and negative

numbers, then use this to define the above mentioned ordering.

Definition 1.12. Let a, b be real numbers. We say that a is greater than b, and

write a > b, if a− b is positive. Further, we say that a is smaller than b, and write

a < b, if a − b is negative.

Remark. We use several variations of the relations > and <. The relation ≤
means smaller or equal, and ≥ stands for greater or equal, and for negation of

statements involving such symbols we use the notations 6>, 6<, 6≥, 6≤.

Theorem 1.13. (Properties of the strict ordering) Let a, b and c be arbitrary

real numbers. Then the following properties of the ordering < (”strictly smaller”)

are true:
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Irreflexive property The statement a < a is always false.

Strict antisymmetry property The statements a < b and b < a are never true

simultaneously

Transitive property If a < b and b < c then a < c

Addition property If a < b then a + c < b + c

Multiplication property If a < b and c > 0 then ac < bc

If a < b and c < 0 then ac > bc

Trichotomy property For two given real numbers a and b one of the

following three statements is always true

a < b, b < a or a = b

Remark. The ordering > (”strictly greater”) has completely similar properties.

Theorem 1.14. (Properties of the non-strict ordering) Let a, b and c be

arbitrary real numbers. Then the following properties of the ordering ≤ (”smaller

or equal”) are true:

Reflexive property The statement a ≤ a is always true.

Antisymmetry property If a ≤ b and b ≤ a then we have a = b

Transitive property If a ≤ b and b ≤ c then a ≤ c

Addition property If a ≤ b then a + c ≤ b + c

Multiplication property If a ≤ b and c ≥ 0 then ac ≤ bc

If a ≤ b and c ≤ 0 then ac ≥ bc

Dichotomy property For two given real numbers a and b one of the

following two statements is always true

a ≤ b or b ≤ a

Remark. The ordering ≥ (”greater or equal”) has completely similar properties.
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1.7 Intervals

Intervals are the sets corresponding to segments or semi-lines of the coordinate

line. An interval is a set containing all real numbers between the two endpoints

of the interval. In the interval notation we use square brackets around the two

endpoints of the interval, and the direction of the square bracket also indicates if

the endpoint is included in the set or not.

Definition 1.15. Let a ≤ b be real numbers. Then we define the following types

of intervals:

• Open intervals:

]−∞, b[ := {x ∈ R |x < b}

]a, b[ := {x ∈ R | a < x < b}

]a,∞[ := {x ∈ R | a < x}

• Half-open intervals:

]−∞, b] := {x ∈ R |x ≤ b}

[a, b[ := {x ∈ R | a ≤ x < b}

]a, b] := {x ∈ R | a < x ≤ b}

[a,∞[ := {x ∈ R | a ≤ x}

• Closed interval

[a, b] := {x ∈ R | a ≤ x ≤ b}

Remark. If a = b then we have the following conventions:

[a, a] = {a} and ]a, a[= [a, a[=]a, a] = ∅
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In principal it is also possible to define intervals with the left endpoint larger then

the right endpoint such intervals representing always the empty set. This can

be useful when writing down proofs including intervals where the endpoints are

unknowns (i.e. letters) so a priory we do not know which of them is smaller or

larger, but we will never write down an interval with given numbers as endpoints

so that the left endpoint is larger than the right one.

Remark. If the square bracket ”is looking toward the center” of the interval then

the endpoint is included, otherwise it is not included in the set. So the same kind

of bracket has different meaning at the left and right endpoint of the interval. This

can be explained in the following way:

• the sign ] at the left endpoint of an interval means that

the endpoint is not included in the set

• the sign ] at the right endpoint of an interval means that

the endpoint is included in the set

• the sign [ at the left endpoint of an interval means that

the endpoint is included in the set

• the sign [ at the right endpoint of an interval means that

the endpoint is not included in the set

Exercise 1.1. Decide which of the real numbers −7,−5.3,−5,−4.99,−π,−1, 0, 1,
√

3, 3.99, 4, 4.02, 5 are included in the interval:

a) ]−∞,−5[ b) ]−∞,−5] c) ]−5, 4[

d) [−5, 4[ e) ]−5, 4] f) [−5, 4]

g) [−5,∞[ h) ]−5,∞[ f)
[√

3, 5
[
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Draw the graph representing the above intervals on a real number line.

Exercise 1.2. Determine the intervals containing all real numbers fulfilling the

following condition

a) 2 < x < 7 b) x ≥ 3 c) x ≤ 3

d) 5 ≤ x < 8 e) 5 < x ≤ 11 f) x < 7

g) − 1 < x h) x > −1 f) 1 ≤ x ≤ 3

1.8 The Absolute Value of a Real Number

Definition 1.16. Let x be a real number. The absolute value of x is defined by

|x| :=







x if x ≥ 0

−x if x < 0

(1.1)

Remark. The absolute value of a real number is in fact the distance from the

origin of the point which represents that number on the number line.

Equivalent definitions for the absolute value:

All formulas below are equivalent reformulations of (1.1), so they are equivalent

definitions of the absolute value:

|x| :=







x if x > 0

−x if x ≤ 0

|x| :=







x if x ≥ 0

−x if x ≤ 0

|x| :=







x if x > 0

0 if x = 0

−x if x < 0

Theorem 1.17. (Properties of absolute value)

Let a, b ∈ R be arbitrary real numbers. Then we have
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• |a| ≥ 0,

• | − a| = |a|,

• |a · b| = |a| · |b|,

•
∣
∣a

b

∣
∣ = |a|

|b| ,

• |a + b| ≤ |a| + |b|,

• |a| = b if and only if a = b or a = −b,

• |a| < b if and only if −b < a < b,

• |a| > b if and only if a < −b or a > b.

1.8.1 The graphical approach of absolute value function

We consider an example. Let f(x) = 2|x − 5| + 4 and give the graph of this

function. First take the graph of the function |x|, see figure 1.1.

Next figure 1.2 shows the function |x − 5|.
In the third step we have the graph of 2|x − 5|, see figure 1.3.

Finally, the graph of f(x) is on figure 1.4.

We remark that this geometrical approach is useful to solve certain equations

containing absolute value(s).

1.9 Exponentiation

1.9.1 Integer exponents

Let a be a real number and n a natural number. To shorten the notation for

the repeated multiplication a · a · . . . · a (a appearing n times) we introduce the
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Figure 1.1: Graph of the function |x|
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Figure 1.2: Graph of the function |x − 5|
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Figure 1.3: Graph of the function 2|x − 5|
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Figure 1.4: Graph of the function 2|x − 5| + 4
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exponential notation an, i.e.

an := a · a · . . . · a
︸ ︷︷ ︸

n times

.

Here we call a the base and n the exponent or the power. Further, put a0 := 1

and for a 6= 0 put a−n := 1
an for any natural number n. This way we have defined

the exponentiation for any non-zero real base and any integer exponent.

Theorem 1.18. (Properties of exponentiation with integral exponents)

Let m,n be integers and a, b real numbers. Further, if a or b is zero then suppose

that m and n are positive. Then we have

• am · an = am+n

• am

an = am−n

• (am)n = amn

• (ab)n = anbn

•
(

a
b

)n
= an

bn

Example. Simplify the following expression containing exponentiations:

(a3)2 · a4 · (a2)5

a7 · (a2)4
; a 6= 0.

Solution:

(a3)2 · a4 · (a2)5

a7 · (a2)4
=

a6 · a4 · a10

a7 · a8
=

a6+4+10

a7+8
=

a20

a15
= a20−15 = a5.

Example. Simplify the following expression containing exponentiations:

(a4b−2)−2 · a6b

a−2b5
; a 6= 0, b 6= 0.

Solution:

(a4b−2)−2· a6b

a−2b5
= (a4)−2·(b−2)−2·a6−(−2)b1−5 = a−8·b4·a8b−4 = a−8+8·b4+(−4) = a0b0 = 1.
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Exercise 1.3. Simplify the following expression containing exponentiations:

a) 26 · 27 b)
26

24
c) 106 ·

(
1

5

)6

d) (24)3 e)
84

44
f)

a7 · a−4

a3

g) 36 · 33 : 37 h) 325

i) (32)5

j)
(25 · 34 · 53) · (24 · 33 · 52 · 73)

26 · 35 · 55 · 7 k) 242

: (24)3 l) (−3a2b4c3)2

m) 4a2b3c7 · (−3ab2c5) n)
−27a8b9c7

−3a4b8c7
o)

2−3a4b−5c−2

3−2a−2b−3c−1

p)
2

3
(a3)2b−3c4

[

−1

2
a4b7c−3

]

q)
5a0b−3(c−2)0

2−1a−3b−5d3
r)

a3b−5c3

a−2b−7c

s) (−2x2y−3z−1)−3 · (−1x−1y4z5)2 t) 3x2(y3)2z4 · 2(x3y2z)3 u)
a42

(b3)2

a23b22

1.9.2 Radicals

Definition 1.19. Let a, b be real numbers, n a natural number. Suppose that if

n is even, then a and b are positive. Then the nth root of a is denoted by n
√

a

and is defined by

n
√

a = b if and only if a = bn.

For 2
√

a we use the notation
√

a.

Example.

√
4 = 2,

3
√

125 = 5, 5
√
−32 = −2, 4

√
−16 has no sense (it is not a real number)

Theorem 1.20. (Properties of radicals) If n, k are positive integers and a, b

are positive real numbers, then we have
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1). n
√

an = ( n
√

a)
n

= a

2). k
√

an = ( k
√

a)
n

3). n
√

a k
√

a =
nk
√

an+k

4).
n
√

a
k
√

a
=

nk
√

an−k

5). k

√
n
√

a = n

√
k
√

a = nk
√

a

6). n
√

a n
√

b = n
√

ab

7).
n
√

a
n
√

b
= n

√
a
b

Remark. The above statements are not necessarily true for the case when a, b

might be negative. In one hand, for even n some of the expressions above have no

sense in the set of real numbers. On the other hand, some of the above statements

may be modified for the case of negative values of a, b.

In the case of statement 1) of Theorem 1.20 for even n and negative a we would

have n
√

an = |a| = −a, while ( n
√

a)
n

has no sense over the real numbers.

Example. Write the following expression using only one root sign:
√

a
3

√

a2 4
√

a3; a ≥ 0.

Solution:
√

a
3

√

a2 4
√

a3 =

√

3

√

a3 · a2 4
√

a3 =
6

√

a5 4
√

a3 =
6

√

4

√

(a5)4 · a3 =
24
√

a20 · a3 =
24
√

a23

Example. Write the following expression using only one root sign:

√
a · 3

√
a2 · 4

√
a5; a ≥ 0.

Solution:
√

a · 3
√

a2 · 4
√

a5 =
12
√

a6 · 12

√

(a2)4 · 12

√

(a5)3 =
12
√

a6 · 12
√

a8 · 12
√

a15

=
12
√

a6 · a8 · a15 =
12
√

a6+8+15 =
12
√

a29
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Exercise 1.4. Simplify the following expression containing exponentiations, where

all the indeterminates are supposed to be positive:

a)
3

√√
2 b)

√

5
√

3 c)

√

3
√

a2

d)
3

√

4
√

a2b e)

√

a

√

a
√

a f)

√

a

√

a2 4
√

a3

g)

√

x

y

√
y

x

√
x

y
h) 3

√
a ·

√
b · 4

√
ab i)

√
a

b
· 3

√

b

a
· 6
√

a

j) 3
√

xy · 5

√
x

y
· 10

√
y

x
k)

√

x

y
3

√
y

x
4
√

xy l)
5

√

x
4

√

1

x
3
√

x

m)

√

a 3
√

a 4
√

a n)
√

a3 · 3
√

a2 · 6
√

a11 o)
5

√

a 4
√

a

p)
3

√

a2

√

a3
√

a q) 7
√

a · 5
√

a · 3
√

a r)
4

√

a5 3

√

a2
√

a

1.9.3 Rational exponents

To extend the exponentiation for rational exponents for integers m,n (n > 1) we

put

am/n = (a1/n)m =
(

n
√

a
)m

= n
√

am. (1.2)

However, this has no sense among the real numbers when a < 0 and n is even.

Further, the laws of exponentiation with integer coefficient do not always generalize

for the case of non-positive bases. For example, ((−1)2)1/2 = 1, but this is not

equal to (−1)2·1/2 = −1. Thus in the sequel, whenever we use a non-integral

rational exponent we have to restrict ourselves to positive bases.

Theorem 1.21. (Properties of exponentiation with rational exponents)

Let r, s be rational numbers, and let a, b be positive real numbers. Then we have
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1). ar · as = ar+s

2). ar

as = ar−s

3). a−r = 1
ar

4). (ar)s = ars

5). (ab)r = arbr

6).
(

a
b

)r
= ar

br

Example. Simplify the following expression:

(

a
3

4 b
1

3

)10

· (
√

a3)−3 · 3
√

b2; a > 0, b > 0.

Solution:

(

a
3

4 b
1

3

)10

· (
√

a3)−3 · 3
√

b2 =
(

a
3

4

)10

·
(

b
1

3

)10

·
√

(a3)−3 · 3
√

b2

= a
3

4
·10 · b 1

3
·10 ·

√
a−9 · 3

√
b2 = a

15

2 · b 10

3 · a−9

2 · b 2

3

= a
15

2
+−9

2 · b 10

3
+ 2

3 = a
6

2 · b 12

3 = a3b4.

Exercise 1.5.

a)

(

a
2

3 · b 1

2

)6

a3 · b2
b)
(

a
2

3 · b 1

2

)−2

· a 1

3 · b2 c)
(

a
3

2 · b 5

4

)−2

· a5 · b3

d)

(

a
4

3 · b− 1

9

)9

a10 · b2
e)

(

a
2

5 · b 1

2

)10

a3 · b4
f)

(

a
1

3 · b 2

5

)3

a3 · b2

g)

(

a
4

3 · b 3

2

)5

a3 · b2
h)
(

a
3

2 · b 1

2

)−2

· a 5

3 · b2 i)
(

a
2

7 · b 3

5

)−3

· a 14

3 · b 7

3

j)

(

a− 2

3 · b 1

4

)6

a−4 · b 3

2

k)

(

a− 2

5 · b 3

4

)6

a−3 · b 3

4

l)

(

a− 2

7 · b 3

7

)14

a−4 · b6



Chapter 2

Algebraic expressions

2.1 Introduction to algebraic expressions

In algebra it is common to use letters to represent numbers. If a letter may

represent several numbers, then it is called a variable, if it represents a fixed value

(like Π = 3.141592 . . . ) then it is called a constant.

In mathematics variables are used in two ways. In one hand, there are variables,

which represent a particular number (or some particular numbers) which have not

yet been identified, but which have to be found. (An example for this use is the

case of equations.) Such variables are also called unknowns. A second use of the

variables is to describe general relationship between numbers, operations and other

mathematical objects. (An example for this is the use of variables in describing

axioms of real numbers.)

Definition 2.1. (Algebraic expression) An algebraic expression is the result

of performing a finite number of the basic operations addition, subtraction, mul-

tiplication, division (except by zero), extraction of roots on a finite set of variables

29
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and numbers, and use of a finite number of grouping symbols. By equivalent

expressions we mean expressions which represent the same real number for all

valid replacements of the variables.

Remark. In many cases our goal is to simplify a given algebraic expression such

that the result is an equivalent expression to the original one, which is much

simpler in form. In the process of this simplification one may use only a restricted

number of transformations, namely those which preserve the equivalence of the

expressions. These are mainly the transformations described in our theorems.

Example.
a2/3 − ab2

a−1/3 · 5
√

b
, x2 − 3,

x3 − 1

x2 + x + 1

Definition 2.2. Here we define some basic notions connected to algebraic expr-

essions:

• A term is the product of a real number and powers of one or more variables.

The above-mentioned real number is called the coefficient.

• Two terms with the same variables rised to the same powers are called ”like

terms” or ”terms of the same type”. Like terms which are added or

subtracted may be ”collected” (using the distributive law) to get again a

”like term” to the original ones whose coefficient can be computed by adding

or subtracting the coefficients of the original ”like terms”.

• A monomial is a term in which all variables are raised to non-negative

integer powers.

• The degree of a monomial is the sum of the exponents of all unknowns

in the monomial.
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• A polynomial is an algebraic expression which is the sum of finitely many

monomials. If the polynomial consists of only one term, then it is a mono-

mial, if it consist of 2, 3, 4 terms, then we call it a binomial, trinomial,

quadrinomial, respectively.

• The degree of a polynomial is the maximum of the degree of all monomials

of the polynomial.

• A non-constant polynomial is called univariate if it contains a single vari-

able, and multivariate otherwise.

• The quotient of two algebraic expressions (with non-zero denominator) is

called a fractional expression. The quotient of two polynomials is called a

rational expression.

• The main term of a univariate polynomial is its term with largest exponent.

The coefficient of the leading term of a univariate polynomial is called the

leading coefficient of the polynomial.
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2.2 Polynomials

2.2.1 Basic operations on polynomials

Adding polynomials: To add two polynomials we build the result by

including all the monomials of both polynomials and we simplify the re-

sult by collecting like terms.

Subtracting polynomials: Subtraction of polynomials is performed in

the same way as addition, except that first we change the sign of all the

monomials of the subtrahend polynomial.

Multiplying polynomials: To multiply two polynomials we multiply all

terms of the firs multiplicand polynomial by all terms of the second mul-

tiplicand polynomial (one by one) and we simplify the result by collecting

like terms.

Example. Let P (x, y) := x2 − 3xy + 2y3 and Q(x, y) := 2x2 − 3xy2 + 3y3. Then

we have

(P + Q)(x, y) =(x2 − 3xy + 2y3) + (2x2 − 3xy2 + 3y3) =

= x2 − 3xy + 2y3 + 2x2 − 3xy2 + 3y3 = 3x2 − 3xy + 5y3 − 3xy2,

(P − Q)(x, y) =(x2 − 3xy + 2y3) − (2x2 − 3xy2 + 3y3) =

= x2 − 3xy + 2y3 − 2x2 + 3xy2 − 3y3 = −x2 − 3xy − y3 + 3xy2,

(P · Q)(x, y) =(x2 − 3xy + 2y3) · (2x2 − 3xy2 + 3y3) =

= 2x4 − 6x3y + 4x2y3

︸ ︷︷ ︸

(x2−3xy+2y3)·2x2

−3x3y2 + 9x2y3 − 6xy5

︸ ︷︷ ︸

(x2−3xy+2y3)·(−3xy2)

+ 3x2y3 − 9xy4 + 6y6

︸ ︷︷ ︸

(x2−3xy+2y3)·3y3

=

= 2x4 − 3x3y2 − 6x3y + 16x2y3 − 6xy5 − 9xy4 + 6y6
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Exercise 2.1. Let P (x, y), Q(x, y) and H(x, y) be polynomials defined by

P (x, y) := x2 − 3xy + y2,

Q(x, y) := 2x3 − x2y + 3xy2 + 5y3,

H(x, y) := x2 + 5xy + 3x − 2xy3 + y.

Compute the following expressions:

a) P (x, y) + H(x, y) b) xP (x, y) + Q(x, y)

c) P (x, y) · Q(x, y) d) P (x, y) − 2H(x, y)

e) P (x, y) · H(x, y) f) (P (x, y) − H(x, y))P (x, y)

Exercise 2.2. Let P (x), Q(x) and H(x) be univariate polynomials defined by

P (x) := x2 − 3x + 2,

Q(x, y) := x3 − 2x2 + 3x + 5,

H(x, y) := x2 + 2.

Compute the following expressions:

a) P (x) + Q(x) b) xP (x) + Q(x)

c) P (x) · Q(x) d) P (x) + 2H(x)

e) P (x) · H(x) f) (P (x) + Q(x)) · H(x)

g) (x · P (x) + 3 · Q(x)) · H(x) h) P (x) + Q(x) + H(x)

i) P (x) · (Q(x) + H(x)) j) P (x) · Q(x) · H(x)
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2.2.2 Division of polynomials by monomials

Division of a monomial by another monomial is done in the following steps

1). Divide the sign of the two monomials.

2). Divide the coefficients of the two monomials.

3). Divide the like variables by subtracting their exponents.

Example.
12x4y7z

−3x3y
= −12

3
· x4−3y7−1z1−0 = −4xy6z

Exercise 2.3. Divide the following two monomials (with rational coefficients):

a) 12x3y4z by 3x2yz b) 8x2y5z3 by 4x2yz2

c) 2x7y2z4 by 4x5z3 d) 3a3b4c2 by 5a2c2

e) 6a7b5c6 by 3a5bc4 f) 20a5b2c9d9 by 25a3b2c4d7

Division of a polynomial by a monomial is done in the following steps

1). Divide each term (monomial) of the dividend polynomial

by the divisor monomial

2). Add the results to get the resulting polynomial

Example.
x2y3 − 3x5y2

x2y
=

x2y3

x2y
+

−3x5y2

x2y
= y2 − 3x3y.

Remark. Although the formal division of two monomials can be executed always,

the result of this division is a monomial only when the dividend monomial is

divisible by the divisor monomial. Otherwise the result is an algebraic expression,

but not a monomial. The same is true for division of polynomials by monomials,

and even for division of polynomials by polynomials.
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2.2.3 Euclidean division of polynomials in one variable

In this section we present the division algorithm for univariate polynomials with

complex, real or rational coefficients. This procedure is a straightforward genera-

lization of the long division of integers.

The steps of the polynomial division:

1). Write the dividend and the divisor polynomials in the following

scheme

dividend polynomial divisor polynomial

quotient polynomial

2). Divide the main term of the dividend by the main term of the divisor

polynomial, and write the resulting monomial to the place of the

quotient

3). Multiply the above resulting monomial by the divisor, change the sign

of every monomial of the result, and write the resulting polynomial

below the dividend.

4). Draw a horizontal line, add the dividend to the above resulting

polynomial and write the result of the addition below the line

5). Let the polynomial below the last horizontal line take the role of the

dividend and repeat steps 2)-4) until the polynomial below the last

horizontal line is zero or has degree strictly smaller than the degree

of the divisor.

Example. Divide the polynomial f(x) = x4−3x3+5x2+x−5 by g(x) = x2−2x+2.
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x4 −3x3 +5x2 +x −5 x2 − 2x + 2

−x4 +2x3 −2x2 x2 − x + 1

−x3 +3x2 +x −5

x3 −2x2 +2x

x2 +3x −5

−x2 +2x −2

5x −7

Remark. If in the dividend polynomial there are missing terms of lower degrees,

than it is wise to include them with coefficient 0 in the scheme, so that for their

like terms there is place below them.

Example. Divide the polynomial f(x) = x4 + 5x2 + x− 5 by g(x) = x2 − 2x + 2.

x4 +0x3 +5x2 +x −5 x2 − 2x + 2

−x4 +2x3 −2x2 x2 + 2x + 7

2x3 +3x2 +x −5

−2x3 +4x2 −4x

7x2 −3x −5

−7x2 +14x −14

11x −19

Exercise 2.4. Divide the polynomial f(x) by the polynomial g(x) using the pro-
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cedure of Euclidean division:

a) f(x) := x3 + 2x2 − 4x + 2, g(x) := x2 − x + 1

b) f(x) := x5 − 3x4 + 4x3 + 2x2 − 4x + 2, g(x) := x2 − x + 1

c) f(x) := x5 − 3x4 + 2x2 − 4x + 2, g(x) := x2 − 3x + 2

d) f(x) := x6 − 3x4 + 2x2 − 4x + 2, g := x3 − 2x + 1

e) f(x) := x5 − 3x4 + 4x3 − 5x2 + x + 2 g(x) := x2 − 3x + 2

f) f(x) := x6 − 64, g(x) := x2 − 2x + 4

g) f(x) := x5 − 2x4 − 3x + 2, g(x) := x2 − 3x + 4

h) f(x) := x5 + 2x4 − 5x3 + 2, g := x2 − 5x + 2

i f(x) := x5 − 2x4 − 5x3 + 2x2 − 3x + 2, g(x) := x2 − 4x + 3
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j) f(x) := x5 − 2x4 − 5x3 + 2x2 − 3x + 2, g(x) := x4 − 3x3 + x2 − 4x + 3

k) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x + 10, g(x) := x − 1

l) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x + 10, g(x) := x + 1

m) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x + 10, g(x) := x − 2

n) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x + 10, g(x) := x + 2

o) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x + 10, g(x) := x + 3

p) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x + 10, g(x) := x2 − 1

q) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x − 1

r) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x + 1

s) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x − 2

t) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x + 2

u) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x − 3

v) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x + 3

w) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x2 − x − 1

x) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x2 − 1

y) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x2 + x − 1

z) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x2 + 2x − 1

2.2.4 Horner’s scheme

In this section we consider that case of the polynomial division, when the divisor

takes the form x − c. Let us consider a concrete example:
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1x4 +2x3 +5x2 +x −5 x − 2

−x4 +2x3 1x3 + 4x2 + 13x + 27

4x3 +5x2 +x −5

−4x3 +8x2

13x2 +x −5

−13x2 +26x

27x −5

−27x +54

49

It is clear that in fact we only need to compute the numbers typeset by red,

since they are exactly the coefficients of the quotient, and of course the remainder

typeset in blue. The Horner’s scheme below gives a much simpler procedure to

compute these numbers:

Theorem 2.3. (Horner’s scheme) Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0

with an, . . . , a0 ∈ R, and g(x) = x − c with c ∈ R be two polynomials. Build the

following table:

an an−1 . . . . . . ai+1 . . . . . . a1 a0

c bn−1 bn−2 . . . . . . bi . . . . . . b0 r

where

bn−1 := an

bi := b · bi+1 + ai+1 for i = n − 2, n − 3, . . . , 0

r := c · b0 + a0.

(2.1)

Then the quotient of the polynomial division of f by g is the polynomial

q(x) = bn−1x
n−1 + bn−2x

n−2 + · · · + b1x + b0,
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and the remainder is the constant polynomial r. Further, we also have

f(c) = r. (2.2)

Remark. In other words the above theorem states that in Horner’s scheme the

numbers in the first line are the coefficients of the polynomial f , and the numbers

computed in the second line of the scheme are the following:

• the first number is the zero of the polynomial g(x) = x − c

• the next numbers (except for the last one) are the coefficients of the quotient

polynomial of the polynomial division of f by g

• the last number is the remainder of the above division, but it is also the

value of the polynomial f(x) at x = c.

Example. Now we divide the polynomial f(x) = x4 + 2x3 + 5x2 + x − 5 by the

polynomial x − 2 using Horner’s scheme. The first place in the first line is empty,

then we list the coefficients of f . Then we solve the equation

x − 2 = 0

to get x = 2, thus the first element in the second line of the Horner’s scheme will

be 2. Then we compute the consecutive elements of the second line using (2.1) to

get

1 2 5 1 −5

2 1 4 13 27 49

This means that f(x) = (x − 2)(x3 + 4x2 + 13x + 27) + 49.
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Remark. If in the dividend polynomial there are missing terms of lower degrees,

than it is compulsory to include the coefficients of these terms (i.e. 0-s) in the

upper row of the Horner’s scheme.

Example. Divide the polynomial f(x) = x4−5x2 +x−5 by the polynomial x+2

using Horner’s scheme. The first place in the first row is empty, then we list the

coefficients of f , including the coefficient 0 of x3. Then we solve the equation

x + 2 = 0

to get x = −2, thus the first element in the second row of the Horner’s scheme will

be 2. Then we compute the consecutive elements of the second line using (2.1) to

get

1 0 −5 1 −5

−2 1 −2 −1 3 −11

This means that f(x) = (x + 2)(x3 − 2x2 − x + 3) + (−11).

Exercise 2.5. Divide the polynomial f(x) by the monic linear polynomial g(x)
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using Horner’s scheme:

a) f(x) = x5 − 2x4 + x3 − 3x2 + 2x − 5, g(x) = x + 1

b) f(x) = x5 − 5x4 + 3x3 − 2x2 + 2x − 3, g(x) = x − 2

c) f(x) = x5 − 5x4 + 3x3 − 2x2 + 2x − 3, g(x) = x + 2

d) f(x) = x7 − 5x6 + 2x5 − 4x4 − x3 + 3x − 2, g(x) = x − 1

e) f(x) = x7 − 5x6 + 2x5 − 4x4 − x3 + 3x − 2, g(x) = x + 1

f) f(x) = x7 − 5x6 + 2x5 − 4x4 − x3 + 3x − 2, g(x) = x − 2

g) f(x) = x7 − 5x6 + 2x5 − 4x4 − x3 + 3x − 2, g(x) = x + 2

h) f(x) = x6 − 2, g(x) = x − 1

i) f(x) = x6 − 2, g(x) = x − 2

j) f(x) = x6 − 2, g(x) = x + 2

k) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x + 10, g(x) := x − 1

l) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x + 10, g(x) := x + 1

m) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x + 10, g(x) := x − 2

n) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x + 10, g(x) := x + 2

o) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x + 10, g(x) := x + 3

p) f(x) := x7 − x5 + x3 − x, g(x) := x + 1

q) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x − 1

r) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x + 1

s) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x − 2

t) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x + 2

u) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x − 3

v) f(x) := x6 − 4x4 − x3 + 3x − 2, g(x) := x + 3,

w) f(x) = x7 + 3x6 + 2x5 − 3x4 + x3 − 5x2 − 3x + 4, g(x) = x + 1

x) f(x) = x7 + 3x6 + 2x5 − 3x4 + x3 − 5x2 − 3x + 4, g(x) = x − 1

y) f(x) = x7 + 3x6 + 2x5 − 3x4 + x3 − 5x2 − 3x + 4, g(x) = x + 2

z) f(x) = x7 + 3x6 + 2x5 − 3x4 + x3 − 5x2 − 3x + 6, g(x) = x + 1
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Exercise 2.6. Decide using Horner’s scheme if the below polynomial f(x) is di-

visible by the polynomial g(x) or not, and if the answer is yes, then compute the

quotient f(x)
g(x)

, and if the answer is no, then compute the quotient and the remainder
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of the Euclidean division of f(x) by g(x):

a) f(x) = x6 + 4x5 − 11x4 − 31x3 − 4x2 + 11x + 30, g(x) = x − 2

b) f(x) = x6 + 4x5 − 11x4 − 31x3 − 4x2 + 11x + 30, g(x) = x + 2

c) f(x) = x6 + 4x5 − 11x4 − 31x3 − 4x2 + 11x + 30, g(x) = x − 1

d) f(x) = x6 + 4x5 − 11x4 − 31x3 − 4x2 + 11x + 30, g(x) = x + 1

e) f(x) = x6 + 4x5 − 11x4 − 31x3 − 4x2 + 11x + 30, g(x) = x + 3

f) f(x) = x6 + 4x5 − 11x4 − 31x3 − 4x2 + 11x + 30, g(x) = x − 3

g) f(x) = x6 + 4x5 − 11x4 − 31x3 − 4x2 + 11x + 30, g(x) = x + 4

h) f(x) = x6 + 4x5 − 11x4 − 31x3 − 4x2 + 11x + 30, g(x) = x + 5

i) f(x) = x7 + 3x6 − 7x5 − 28x4 − 21x3 + 7x2 + 27x + 18, g(x) = x2 − 1

j) f(x) = x7 + 3x6 − 7x5 − 28x4 − 21x3 + 7x2 + 27x + 18, g(x) = x2 − 4

k) f(x) = x7 + 3x6 − 7x5 − 28x4 − 21x3 + 7x2 + 27x + 18, g(x) = x2 − 9

l) f(x) = x7 + 6x6 + 15x5 + 21x4 + 6x3 − 15x2 − 22x − 12, g(x) = x − 1

m) f(x) = f(x) = x7 + 6x6 + 15x5 + 21x4 + 6x3 − 15x2 − 22x − 12, g(x) = x + 1

n) f(x) = f(x) = x7 + 6x6 + 15x5 + 21x4 + 6x3 − 15x2 − 22x − 12, g(x) = x2 − 1

o) f(x) = f(x) = x7 + 6x6 + 15x5 + 21x4 + 6x3 − 15x2 − 22x − 12, g(x) = x − 2

p) f(x) = f(x) = x7 + 6x6 + 15x5 + 21x4 + 6x3 − 15x2 − 22x − 12, g(x) = x + 2

q) f(x) = f(x) = x7 + 6x6 + 15x5 + 21x4 + 6x3 − 15x2 − 22x − 12, g(x) = x2 − 4

r) f(x) = f(x) = x7 + 6x6 + 15x5 + 21x4 + 6x3 − 15x2 − 22x − 12, g(x) = x − 3

s) f(x) = f(x) = x7 + 6x6 + 15x5 + 21x4 + 6x3 − 15x2 − 22x − 12, g(x) = x + 3

t) f(x) = f(x) = x7 + 6x6 + 15x5 + 21x4 + 6x3 − 15x2 − 22x − 12, g(x) = x2 − 9

u) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, g(x) = x + 1

v) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, g(x) = x − 1

w) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, g(x) = x2 − 1

x) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, g(x) = x2 − 4

y) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, g(x) = x2 − 9

z) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, g(x) = x2 + 5x + 6
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Exercise 2.7. Compute the value of the following polynomial f(x) at the given

value of the indeterminate x:

a) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, x = 1

b) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, x = 2

c) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, x = 3

d) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, x = −4

e) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, x = −3

f) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, x = −2

g) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, x = −1

h) f(x) = x8 + x7 − 11x6 − 12x5 + 11x4 + 23x3 + 59x2 + 36x + 36, x = 0

i) f(x) = x6 − 13x4 − 9x3 + 40x2 + 81x − 36, x = 1

j) f(x) = x6 − 13x4 − 9x3 + 40x2 + 81x − 36, x = −1

k) f(x) = x6 − 13x4 − 9x3 + 40x2 + 81x − 36, x = 2

l) f(x) = x6 − 13x4 − 9x3 + 40x2 + 81x − 36, x = −2

m) f(x) = x6 − 13x4 − 9x3 + 40x2 + 81x − 36, x = 3

n) f(x) = x6 − 13x4 − 9x3 + 40x2 + 81x − 36, x = −3

o) f(x) = x6 − 13x4 − 9x3 + 40x2 + 81x − 36, x = 4

2.3 Factorization of polynomials

A polynomial is in fact a sum of terms. Factorization of a polynomial is the process

of finding polynomials whose product is the original polynomial.

We can consider multiplication of polynomials as the process of changing pro-

ducts into sums. In this sense factorization of polynomials is the inverse process,

i.e. changing sums into products.
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Polynomials that cannot be factorized are called irreducible polynomials.

The example of the polynomial x2 − 3 = (x −
√

3)(x +
√

3) shows that there

are polynomials which can be factorized over the real numbers, meanwhile being

irreducible over the rational numbers. So when we try to factorize a polynomial

we have to specify what kind of coefficients are allowed for the factors.

Further, if we wish to factorize a polynomial over the rational or real numbers,

then for every polynomial we clearly have infinitely many decompositions with

one of the factors being a number (e.g. like x + 1 = 1
2
(2x + 2)). Thus such a

decompositions is not considered a factorization.

2.3.1 Factorization by factoring out the greatest common

monomial

If every monomial of the polynomial has a common factor, then we can factor out

(or ”pull out”) this factor by using the distributive property of real numbers.

Example.

x3y2

︸︷︷︸

xy2·(x2)

+ 3xy5

︸︷︷︸

xy2·(−3y3)

+ x5y3

︸︷︷︸

xy2·(x4y)

= xy2(x2 − 3y3 + x4y)

2.3.2 Special products – Special factorization formulas

The following special product formulas in one hand give a help to shorten the

computations with algebraic expressions, on the other hand (using them the other

way around) they help at factorization of polynomials.

Powers of sums and differences
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(a + b)2 = a2 + 2ab + b2

(a − b)2 = a2 − 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a − b)3 = a3 − 3a2b + 3ab2 − b3

(a + b)n =
n∑

i=0

(
n

i

)

an−ibi

Difference of perfect powers

a2 − b2 = (a + b)(a − b)

a3 − b3 = (a − b)(a2 + ab + b2)

an − bn = (a − b)(an−1 + an−2b + an−3b2 + . . . + bn−1)

Sums of perfect powers

a3 + b3 = (a + b)(a2 − ab + b2)

a2k+1 + b2k+1 = (a + b)(a2k − a2k−1b + a2k−2b2 − . . . − ab2k−1 + b2k)

Remark. We have not given formulas for the sum of perfect powers with even

exponents. The reason for this is that there are no such formulas over the real

numbers.

Example. Below we give some examples, where we use the above formulas to

factorize polynomials.

• x4 − 4x2y + 4y2 = (x2)2 − 2 · x2 · 2y + (2y)2 = (x2 − 2y)2
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• x4 − 4y2 = (x2)2 − (2y)2 = (x2 + 2y)(x2 − 2y)

• x4 − 6x2y + 8y2 = (x2)2 − 2x2 · 3y + (3y)2 − y2 = (x2 − 3y)2 − y2 =

(x2 − 3y + y)(x2 − 3y − y) = (x2 − 2y)(x2 − 4y)

2.3.3 Factorization by grouping terms

If the polynomial to be factored has at least four terms (or it has three, but

we can split one term in two), and neither factoring out a monomial, nor

using special factorization formulas leads to a factorization, we may try to

group the terms and factorize the groups so that, in the factorized form of

all these groups we will find a common polynomial which can be factored out,

this way leading to a factorized form of the original polynomial.

Example. Factorize the following polynomials over the integers:

1).

3ab − 2ac + 6bd − 4cd =(3ab − 2ac) + (6bd − 4cd)

= a(3b − 2c) + 2d(3b − 2c) = (3b − 2c)(a + 2d)

2).

x3 + x2y + xy2 + y3 =(x3 + x2y) + (xy2 + y3)

= x2(x + y) + y2(x + y) = (x + y)(x2 + y2)

3). In this example, before the grouping we have to split one of the terms:

x2 + 6x + 8 = x2 + 4x + 2x + 8 =(x2 + 4x) + (2x + 8)

= x(x + 4) + 2(x + 4) = (x + 4)(x + 2)
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2.3.4 General strategy of factorization of a polynomial

To factorize a polynomial one has to perform the following steps in the listed order.

1). Factor out the greatest common monomial factor.

2). Check if any of the special factorization formulas can be applied.

3). Try factoring by grouping terms.

4). If one succeeds in factoring the polynomial as the product of two or more

polynomials, then it is necessary to restart the process for every factor.

5). The factorization is finished, when every factor turns out to be irreducible.

As the above strategy suggests, when factorizing polynomials in many cases, we

have to combine the methods presented in Sections 2.3.1, 2.3.2 and 2.3.3.

Example. Factorize the following polynomials using integer coefficients:

1). In this example we first pull out the common factors of all monomials, then

we group the terms, factorize the groups, then we pull out the common

factor, finally we use the formula for difference of squares to factorize one of

the resulting factors.

x5y+x4y2 − x3y3 − x2y4 = x2y(x3 + x2y − xy2 − y3)

= x2y
(
(x3 + x2y) − (xy2 + y3)

)

= x2y
(
x2(x + y) − y2(x + y)

)

= x2y(x + y)
(
x2 − y2

)

= x2y(x + y)(x + y)(x − y) = x2y(x + y)2(x − y)

2). In the present example we first group the terms, we recognize that the second

group is a square of a binomial, then we use the formula for the difference of
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two squares.

x4−x2 + 6x − 9 = x4 − (x2 − 6x + 9) = (x2)2 − (x − 3)2

=
(
x2 + (x − 3)

) (
x2 − (x − 3)

)
= (x2 + x − 3)(x2 − x + 3)

Exercise 2.8. Factorize the following polynomials into factors with rational coef-

ficients:

a) 5x2y + 15y − 5 b) 8a − 8b + 16 c) 8x3 − 12x2y2 + 4x2z

d) a3b + a2b3 + a2b e) a(x + y) − ab(x + y) f)2m3 − 4m5n + 2m2

g) x3y2 − 5x2y + x4y2 h) 4a2(b2 − 2) − 2ab(b2 − 2) i) a(x − 1) + b(1 − x) − 7x + 7

j) x2 − 25 k) x2 − 9y2 l) a4 − 16

m) 4a2 − 12ab + 9b2 n) a3 − 6a2b + 12ab2 − 8b3 o) 125a3 + 8b3

p) 81a4 − 16b2 q) (5x − 3y)2 − 81y2 r) 100(7x − 3y)2 − 9(4x + 5y)2

s) ac + ad + bc + bd t) ac − ad + bc − bd u) a3 + 2a2 + 2a + 4

v) a3 + a2b − ab2 − b3 w) x3 − x2z + 2xz2 − 2z3 x) a4 + a3b − ab3 − b4

y) x2 − 4x + 3 z) x2 − x − 6 ω) x4 − 5x2 + 4

Exercise 2.9. Factorize the following polynomials into factors with rational coef-
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ficients:

a) 3x + 18x3y3 + 27x5y6 b) x3y2 − 100x − x2y3 + 100y + x2y2z − 100z

c) 9a4 + 41a2 − 20 d) (a2b2 + 1)2 − (a2 + b2)2

e) (x + 2y)3 + (3x − y)3 f) x8 + x4 + 1

g) (x + y)4 + x4 + y4 h) x4 − 2(a2 + b2)x2 + a4 + b4 − 2a2b2

i) x2 + 3x − x4 − 3x j) x5 − 5x4 + 4x3 − x2 + 5x − 4

k) x2 + 2xy + y2 − xz − yz l) (abc + abd + acd + bcd)2 − abcd(a + b + c + d)2

m) 3x4y4 − x8 − y8 n) (ac + pbd)2 + p(ad − bc)2

o) ac2 − ab2 + b2c − c3 p) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2

q) a2b4c2 − a2b2c4 + a4b2c2 − a4b4 r) a2b2 + c2d2 − a2c2 − b2d2 − 4abcd

s) x5 + 2x4 + 3x2 + 2x + 1 t) 9x6 + 18x5 + 26x4 + 16x3 + 6x2 − 2x − 1

u) (x + y)3 + 3(x + y)(x2 − y2) + 3(x − y)(x2 − y2) + (x − y)3 − 27y3

v) (cx + by)(ax + cy)(bx + ay) − (bx + cy)(cx + ay)(ax + by)

w) (x2 + x + 1)(x2 + x + 2) − 12

x) abc(a + b + c) − ab − ac − bc − a2b2c2 + 1

y) (x2 + x + 1)(x3 + x2 + 1) − 1

z) (x − a)3(b − c) + (x − b)3(c − a) + (x − c)3(a − b) + 3x(b − c)(c − a)(a − b)

2.3.5 Divisibility of polynomials

Definition 2.4. Let T be any of the sets Q, R. Let P (x), Q(x) ∈ T[x] be two

polynomials. We say that Q divides P if there exists a polynomial R(x) ∈ T[x]

such that P (x) = Q(x)R(x). Further, if Q divides P we also say that P is

divisible by Q, or Q is a factor of P .

Notation. For Q divides P we use the notation Q | P or Q(x) | P (x).



52 CHAPTER 2. ALGEBRAIC EXPRESSIONS

Remark. The fact that Q is a divisor of P in fact means that if we perform the

Euclidean division of P by Q then the remainder is 0.

Theorem 2.5. (Properties of the divisibility of polynomials with rational

coefficients) Let P,Q,R, S, T ∈ Q[x] be polynomials with rational coefficients.

Then we have the following:

1). P | P

2). if P | Q and Q | P then we have P = aQ with some a ∈ Q \ {0}

3). if P | Q and Q | R then P | R

4). if P | Q then P | QR

5). if P | Q and P | R then P | (P ± Q)

6). if P | Q and P | R then P | (S · P ± T · Q)

2.3.6 Roots of polynomials

Theorem 2.6. (The remainder theorem) Let P (x) ∈ R[x] be a polynomial and

r ∈ R a real number. Then P (r) is just the remainder of the Euclidean division of

P (x) by x − r.

Definition 2.7. If P (x) ∈ R[x] is a polynomial with real coefficients then we say

that the number r ∈ R is a root of P if P (r) = 0.

Theorem 2.8. (The factor theorem) Let P (x) ∈ R[x] be a polynomial with real

coefficients and r ∈ R a real number. Then r is a root of P if and only if x− r is

a factor of P (x), i.e. P (x) = (x − r)Q(x) with some polynomial Q(x) ∈ R[x]
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2.4 Rational algebraic expressions

Definition 2.9. A rational expression is a quotient of polynomials.

Example.

x3 + x + 1

x − 7
,

1

x
x2 + 3

2.4.1 Simplification and amplification of rational algebraic

expressions

If the numerator and the denominator of a rational expression has a com-

mon factor then we may cancel this common factor from both the nu-

merator and the denominator, and the resulting expression will be an

equivalent expression to the original one.

Example.

x2 − 1

(x + 2)(x − 1)
=

(x + 1)(x − 1)

(x + 2)(x − 1)
=

x + 1

x + 2

Remark. It is very important that we can only simplify by a factor which is a

factor of the whole numerator and the whole denominator, but we cannot simplify

by an expression which is a factor of only a term of the numerator or (denominator),

but not of the whole numerator (or denominator). For example, in the fraction

below we cannot simplify by x + 1:

2x2 + (x + 3)(x + 1)

(x + 1)(x2 + 3)
.
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Exercise 2.10. Simplify the following expressions

a)
30x2y

6xy2
b)

5x2y7z3

10x4yw2

c)
−12x4

24x6
d)

3(−x)5

12(−x)6

e)
x − 3

2(x − 3)2
f)

5(x − 1)2

x2 − 1

g)
9x2 + 3xy

3xy + 9y2
h)

x2 − 8x

x3 − 8x2

i)
5x − 20

x2 − 16
j)

7x4 − 7y4

9x2y2 + 9y4

We may multiply both the numerator and the denominator of an al-

gebraic fraction by a non-zero expression, and we get a fraction which is

equivalent to the original fraction.

Example. Here we amplify the fraction x+1
x−1

by x2 + x + 1:

x + 1

x − 1
=

(x + 1)(x2 + x + 1)

(x − 1)(x2 + x + 1)
=

(x + 1)(x2 + x + 1)

x3 − 1
.

Exercise 2.11. Amplify the following expressions so that they have the same

denominator

a)
3

5a2b7
and

1

a3b

b)
1

a3(x + 1)
and

1

a2(x + 1)2

c)
x + 3

2x − 1
and

x − 1

3x + 2

d)
1

x + 1
,

1

a3
and

1

3a
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2.4.2 Multiplication and division of rational expressions

• If we have to multiply two rational algebraic expressions, we have

to multiply the numerator by the numerator and the denominator

by the denominator, however, if possible, we first simplify.

• If we have to divide two rational algebraic expressions, we multiply

the dividend expression by the reciprocal of the divisor expression.

Example. Here we present a simple example of multiplication of two rational

expressions

(x + 1)(x2 + x + 1)

x + 3
· x + 5

(x + 4)(x + 1)
=

(x2 + x + 1)(x + 5)

(x + 3)(x + 4)

Example. Here we present a simple example of division of two rational expressions

(x − 1)(x2 + 1)

x − 3
:
(x − 1)(x + 5)

x + 4
=

(x − 1)(x2 + 1)

x − 3
· x + 4

(x − 1)(x + 5)
=

(x2 + 1)(x + 4)

(x − 3)(x + 5)
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2.4.3 Addition and subtraction of rational algebraic expr-

essions

1. If we have to add (subtract) two or more rational algebraic expres-

sions, whose denominators are the same, then the result is a frac-

tion whose denominator is the same like the common denominator of the

summands, and the numerator is the sum (difference) of the original nu-

merators.

2. If we have to add (subtract) two or more rational algebraic expr-

essions, whose denominators are different then we first amplify the

fractions so that all denominators become the same expression, and we

use the rule described in 1.

3. When choosing the common denominator, we have to try to find the

most simple such expression, i.e the least common multiple of all the de-

nominators.

The above rules can be summarized by the above formulas. If the denominators

are the same, then

a

d
+

c

d
=

a + c

d
,

a

d
− c

d
=

a − c

d
.

In the case when the denominators are different, then

a

b
+

c

d
=

ad

bd
+

bc

bd
=

ad + bc

bd
,

a

be
+

c

de
=

ad

bde
+

bc

bde
=

ad + bc

bde

Remark. The product of the denominators is always a theoretically possible cho-

ice for the common denominator, however we strongly discourage the student to

choose this way, since it may make the solution much more complicated. It is
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always advised to search for the simplest possible common denominator (i.e. the

least common multiple of the denominators of the summands), even if this requires

the factorization of the denominators of the summands.

Example. In the following example we may just take the product of the denomi-

nators as the common denominator:

x

x − 1
+

x + 1

x + 2
=

x(x + 2)

(x − 1)(x + 2)
+

(x + 1)(x − 1)

(x + 2)(x − 1)
=

=
x(x + 2) + (x + 1)(x − 1)

(x − 1)(x + 2)

=
x2 + 2x + x2 − 1

(x − 1)(x + 2)
=

2x2 + 2x − 1

(x − 1)(x + 2)
.

In the next example (as always) it is also possible to take the product of the

denominators as the common denominator, however, this makes the computations

much more complicated. We strongly suggest not to choose the following

solution for this exercise, however we include it to show the difference between

this, and the simplest solution:

x

x2 − 1
+

x + 3

(x − 1)(x + 2)
=

x(x − 1)(x + 2)

(x2 − 1)(x − 1)(x + 2)
+

(x + 3)(x2 − 1)

(x2 − 1)(x − 1)(x + 2)

=
x3 + x2 − 2x

(x2 − 1)(x − 1)(x + 2)
+

x3 + 3x2 − x − 3

(x − 1)(x + 2)(x2 − 1)

=
x3 + x2 − 2x + x3 + 3x2 − x − 3

(x2 − 1)(x − 1)(x + 2)
=

2x3 + 4x2 − 3x − 3

(x + 1)(x − 1)2(x + 2)

=
(2x3 − 2x2) + (6x2 − 6x) + (3x − 3)

(x + 1)(x − 1)2(x + 2)

=
2x2(x − 1) + 6x(x − 1) + 3(x − 1)

(x + 1)(x − 1)2(x + 2)

=
(x − 1)(2x2 + 6x + 3)

(x + 1)(x − 1)2(x + 2)
=

(2x2 + 6x + 3)

(x + 1)(x − 1)(x + 2)

Now we give the simplest solution to the above example. This shows that it is

always important to try to find the least common multiple of the denominators and
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use that expression as the common denominator, even if this needs the factorization

of the denominators of the summands.

x

x2 − 1
+

x + 3

(x − 1)(x + 2)
=

x

(x + 1)(x − 1)
+

x + 3

(x − 1)(x + 2)

=
x(x + 2)

(x + 1)(x − 1)(x + 2)
+

(x + 3)(x + 1)

(x + 1)(x − 1)(x + 2)

=
x2 + 2x

(x + 1)(x − 1)(x + 2)
+

x2 + 3x + x + 3

(x − 1)(x + 2)(x2 − 1)

=
x2 + 2x + x2 + 3x + x + 3

(x + 1)(x − 1)(x + 2)
=

(2x2 + 6x + 3)

(x + 1)(x − 1)(x + 2)

In exercises generally our main goal is to transform complicated algebraic expres-

sions to an equivalent, but much simpler algebraic expression.

Example. Simplify the following algebraic expression:
[

1

a2
+

1

b2
+

2

a − b

(
1

a
− 1

b

)]

:
a3 − b3

a2b2
a 6= 0, b 6= 0, a 6= −b.

Solution: [
1

a2
+

1

b2
+

2

a − b

(
1

a
− 1

b

)]

:
a3 − b3

a2b2

=

[
1

a2
+

1

b2
+

2

a − b

(
b

ab
− a

ab

)]

· a2b2

a3 − b3

=

(
1

a2
+

1

b2
+

2

a − b
· b − a

ab

)

· a2b2

a3 − b3

=

(
1

a2
+

1

b2
− 2

ab

)

· a2b2

a3 − b3

=

(
b2

a2b2
+

a2

a2b2
− 2ab

a2b2

)

· a2b2

a3 − b3

=
b2 + a2 − 2ab

a2b2
· a2b2

a3 − b3

=
(a − b)2

a2b2
· a2b2

(a − b)(a2 + ab + b2)

=
a − b

a2 + ab + b2
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Exercise 2.12. Simplify the following algebraic expressions

a)
2a + 1

a + 1
+

a − 2

a − 1
− 3a2 − 1

a2 − 1

b)

(
2

1 − x2
+

x + 2

x − 1

)

:
x + 3

x2 − 1

c)
ax − 6 + 3x − 2a

ax + 6 − 3x − 2a

d)
a2x2 − x2b2 + 2a2x − 2b2x + a2 − b2

(a − b)(x + 1)

e)
xy2 + 2x2y2 + x3y + xy2(x + y)2

xy2 − x − y(1 − y2)

f)
x3 + x2y − x − y

(x2 + 2xy + y2)(x − 1)

g)
x2(x2 + a2)2

x10−a10

x2−a2 − x12+a12

x4+a4

h)
a3x2 + b3x2 + 3abx2(a + b) + (a + b)3

a2x2 + 2abx2 + b2x2 + (a + b)2
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i)

[(
2a

b
− b

2a

)2

+ 2

]

2ab

16a4 + b4

j)

(
5a

a + x
+

5x

a − x
+

10ax

a2 − x2

)

:

(
a

a + x
+

x

a − x
+

2ax

a2 − x2

)

k)

(
b2

a3 − ab2
+

1

a + b

)

:

(
a − b

a2 + ab
− a

b2 + ab

)

l)

(

x − 4xy

x + y
+ y

)

:

(
x

x + y
− y

y − x
− 2xy

x2 − y2

)

m)

(
(a + b)2 + 2b2

a3 − b3
− 1

a − b
+

a + b

a2 + ab + b2

)

·
(

1

b
− 1

a

)

n)
x2 − 1

xy
:

[(
x2 − xy

x2y + y3
− 2x2

y3 − xy2 + x2y − x3

)

·
(

1 − y − 1

x − y
x2

)]

o)
x3 −

(
1

1+ 1

x

+ 1
1

x
+ 1

x2

)

:
(

1
1

x
−1

− 1
1

x2
− 1

x

)

x3 − 1

p)

(
x+y2

a+b
− x4−y4

a3+b3
: x2−y2

a2−ab+b2

)

· (2a + 2b − ax − bx)

x2 − 3x + 3

q)
a2+ab+b2

a3−b3
− a2+2ab+b2

a3+b3
: a2−b2

a2−ab+b2

(7a3 + ab + b5)(2a − 3b) − b3 + a3

2.5 Algebraic expressions containing roots

When working with expressions containing roots the main difference to the case

of rational expressions is that it is harder to find a suitable but simple common

denominator. Thus in many cases it is useful to rationalize the denominator

of such fractions (i.e. to get rid of the roots appearing in the denominator using

equivalent transformations of the expression). This is done generally by using

formulas for special products.

Here we present the most frequently used methods for rationalizing the deno-

minator of a fraction:
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1). If the denominator is a one-term expression containing only one nth root,

then we amplify the fraction by the (n − 1)th power of that root. Specially,

if the one-term denominator contains only one square-root, then we amplify

the fraction by that square-root. Indeed,

1
n
√

a
=

( n
√

a)
n−1

n
√

a · ( n
√

a)
n−1 =

( n
√

a)
n−1

a
,

and in the special case of a square-root

1√
3

=

√
3√

3 ·
√

3
=

√
3

3
.

2). If the denominator is the sum or difference of two square-roots (one of those

being possibly the square-root of a perfect square), then we use the formula

for difference of two squares, namely

x2 − y2 = (x + y)(x − y).

Indeed, if we wish to rationalize the denominator of 1√
a−

√
b

(a, b > 0) then

we amplify the fraction by
√

a +
√

b as follows:

1
√

a −
√

b
=

√
a +

√
b

(
√

a −
√

b)(
√

a +
√

b)
=

√
a +

√
b

a − b

Similarly, we have

1
√

a +
√

b
=

√
a −

√
b

(
√

a +
√

b)(
√

a −
√

b)
=

√
a −

√
b

a − b

3). If the denominator is the sum or the difference of two cube-roots (one of

those being possibly the cube-root of a perfect cube), then we use one of the

formulas

x3 − y3 = (x − y)(x2 + xy + y2) or x3 + y3 = (x + y)(x2 − xy + y2).



62 CHAPTER 2. ALGEBRAIC EXPRESSIONS

Indeed, if we wish to rationalize the denominator of 1
3
√

a− 3
√

b
(a, b > 0) then

we amplify the fraction by ( 3
√

a)
2
+ 3

√
a 3
√

b +
(

3
√

b
)2

as follows:

1
3
√

a − 3
√

b
=

( 3
√

a)
2
+ 3

√
a 3
√

b +
(

3
√

b
)2

(
3
√

a − 3
√

b
)(

( 3
√

a)
2
+ 3

√
a 3
√

b +
(

3
√

b
)2
) =

( 3
√

a)
2
+ 3

√
a 3
√

b +
(

3
√

b
)2

a − b

Similarly, we have

1
3
√

a + 3
√

b
=

( 3
√

a)
2 − 3

√
a 3
√

b +
(

3
√

b
)2

(
3
√

a + 3
√

b
)(

( 3
√

a)
2 − 3

√
a 3
√

b +
(

3
√

b
)2
) =

( 3
√

a)
2 − 3

√
a 3
√

b +
(

3
√

b
)2

a + b

Example. Rationalize the denominator of the following fractions

1). 3
2
√

5

3

2
√

5
=

3
√

5

2
√

5 ·
√

5
=

3
√

5

10

2). 1

2 5
√

3

1

2 5
√

3
=

(
5
√

3
)4

2 5
√

3 ·
(

5
√

3
)4 =

5
√

81

6

3).
√

6√
2+

√
3√
6√

2 +
√

3
=

√
6(
√

2 −
√

3)

(
√

2 +
√

3)(
√

2 −
√

3)
=

√
6(
√

2 −
√

3)

2 − 3
=

√
6(
√

3−
√

2) = 3
√

2−2
√

3

4). 1
2−

√
3

1

2 −
√

3
=

2 +
√

3

(2 −
√

3)(2 +
√

3)
=

2 +
√

3

4 − 3
= 2 +

√
3

5). 1
3
√

5+ 3
√

2

1
3
√

5 + 3
√

2
=

(
3
√

5
)2 − 3

√
5 3
√

2 +
(

3
√

2
)2

(
3
√

5 + 3
√

2
) ((

3
√

5
)2 − 3

√
5 3
√

2 +
(

3
√

2
)2
)

=

(
3
√

5
)2 − 3

√
5 3
√

2 +
(

3
√

2
)2

5 + 2
=

(
3
√

25
)
− 3

√
10 +

(
3
√

4
)

7
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Exercise 2.13. Rationalize the denominator of the following expressions:

a)
1√
7

b)
1
3
√

5
c)

1
k
√

a

Exercise 2.14. Rationalize the denominator of the following expressions:

a)
1√

5 −
√

2
b)

1

1 −
√

5
c)

1√
7 +

√
3

d)
3√

5 +
√

2
e)

5√
6 + 1

f)
3

−
√

11 +
√

13

g)
1

3
√

5 − 3
√

2
h)

3
3
√

7 − 3
√

4
i)

1
3
√

5 + 3
√

2

j)
1

4
√

5 − 4
√

2
k)

1
5
√

5 − 5
√

2
l)

1√
5 − 3

√
2

m)
1

4
√

5 + 4
√

2
n)

1√
5 −

√
3 +

√
2

o)
1√

5 −
√

3 −
√

2

p)
1

√

5 −
√

2 +
√

5 +
√

2
q)

7

1 − 4
√

2 +
√

2
r)

1 −
√

2 + 3
√

2

1 +
√

2 − 3
√

2

s)
1

√
a +

√
b

t)
1

√
a −

√
b

u)
1

√
a +

√
b +

√
c

v)
1

√
a + 3

√
b

w)
1

3
√

a + 3
√

b
x)

1
3
√

a − 3
√

b

y)
1

3
√

a + 3
√

b + 3
√

c
z)

1
n
√

a − n
√

b
α)

1
12
√

a + 12
√

b

β)
1

1 + 3
√

2 + 3
√

4
γ)

1

1 − 3
√

2 + 3
√

4
δ)

1
√

2 +
√

2 +
√

2

Example. Compute the exact value of the following expression

S :=

√

4 + 2
√

3 −
√

4 − 2
√

3.

Solution 1. Our first solution uses the idea that below both square roots there is

a perfect square, which can be observed using the formulas

(a + b)2 = a2 + 2ab + b2 (a − b)2 = a2 − 2ab + b2,
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and trying to find numbers a and b with 2ab = 2
√

3 and a2 + b2 = 4. So we have

S =

√

4 + 2
√

3 −
√

4 − 2
√

3 =

√

3 + 2
√

3 + 1 −
√

3 − 2
√

3 + 1 =

=

√√
3

2
+ 2 ·

√
3 · 1 + 12 −

√√
3

2
+ 2 ·

√
3 · 1 + 12 =

√
(√

3 + 1
)2

−
√
(√

3 − 1
)2

=
∣
∣
∣

√
3 + 1

∣
∣
∣−
∣
∣
∣

√
3 − 1

∣
∣
∣ =

(√
3 + 1

)

−
(√

3 − 1
)

=
√

3 + 1 −
√

3 + 1 = 2.

Solution 2. The second solution is based on the idea to compute the square of S.

We have

S2 =

(√

4 + 2
√

3 −
√

4 − 2
√

3

)2

=

(√

4 + 2
√

3

)2

− 2

√

4 + 2
√

3 ·
√

4 − 2
√

3 +

(√

4 − 2
√

3

)2

= 4 + 2
√

3 − 2

√

(4 + 2
√

3) · (4 − 2
√

3) + 4 − 2
√

3

= 8 − 2

√

42 − (2
√

3)2 = 8 − 2
√

16 − 12 = 8 − 2
√

4 = 4.

Further, since
√

4 + 2
√

3 >
√

4 − 2
√

3 we have S > 0. So we have proved that

S2 = 4

S > 0






=⇒ S = 2.
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Exercise 2.15. Compute the exact value of the following expressions:

a)

√

6 + 2
√

5 −
√

6 − 2
√

5 b)

√

7 + 4
√

3 +

√

7 − 4
√

3

c)

√

16 + 8
√

3 −
√

16 − 8
√

3 d)

√

9 + 3
√

5 ·
√

9 + 3
√

5

e)

√

2 +
√

3 +

√

2 −
√

3 f)

√

2 +
√

3

2 −
√

3
+

√

2 −
√

3

2 +
√

3

g) (
√

3 + 3)
3

√

54 − 30
√

3 h)

√

17 − 4

√

9 + 4
√

5

i) 2

√

3 +

√

5 −
√

13 +
√

48 j)

√

13 + 30

√

2 +

√

9 + 4
√

2

k)

√
√
√
√

26 + 6

√

13 − 4

√

8 + 2

√

6 − 2
√

5 −

√
√
√
√

26 − 6

√

13 + 4

√

8 − 2

√

6 + 2
√

5

l)

√

2 +
√

3

√

2 +

√

2 +
√

3

√

2 +

√

2 +

√

2 +
√

3

√

2 −
√

2 +

√

2 +
√

3

m) 1 +
1

1 +
√

2
+

1√
2 +

√
3

+ · · · + 1√
2011 +

√
2012

n)

√

4
√

8 +
√√

2 − 1 −
√

4
√

8 +
√√

2 − 1
√

4
√

8 −
√√

2 + 1

Exercise 2.16. Simplify the following expressions:

a)
3
√

a − 2√
a + 1

− 2
√

a − 4√
a − 1

− a + 1

a − 1

b)

(
2a + 3

√
a

4a + 12
√

a + 9
− 3

√
a + 2

2
√

a + 3
+

4
√

a − 1

2
√

a + 3

)
2
√

a + 3

2
√

a − 3

c)

√
x +

√
y − 1

x +
√

xy
+

√
x −√

y

2
√

xy

( √
y

x −√
xy

+

√
y

x +
√

xy

)

d)

(

a +
√

ab√
a3 + a

√
b + b

√
a +

√
b3

+

√
b

a + b

)

:

(

1
√

a −
√

b
− 2

√
ab

a
√

a − a
√

b + b
√

a − b
√

b

)



66 CHAPTER 2. ALGEBRAIC EXPRESSIONS



Chapter 3

Equations I

3.1 Introduction to equations

Definition 3.1. An equation is a statement that two algebraic expressions are

equal.

Example. By the above definition the statement

1√
3 −

√
2

=
√

3 +
√

2

is an equation, however, in algebra we are more interested in equations which

contain variables (i.e. letters).

Example. Here are three examples of equations which look completely similar:

1). 3x + 4 − 3(x + 3) + 5 = 0,

2). 3x + 4 − 3(x + 3) + 5 = 1,

3). 3x + 4 − 2(x + 3) + 2 = 0.

67
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However, if we simplify the left hand sides of the above equations we get

1). 0 = 0,

2). 0 = 1,

3). x = 0.

So we can see that we are in three completely different situations:

1). the equation is true for all possible values of x,

2). the equation is false for all possible values of x,

3). the equation is true for only a single value of x, namely 0, so the truth of

the equation depends on the value of x.

The above example justifies to give separate names for such equations, as we

shall do it in the definitions below.

Definition 3.2. An equation which is always false, independently of the value of

the variables involved, is called a contradiction.

Definition 3.3. An equation which is always true, independently of the value of

the variables involved, is called an identity.

Definition 3.4. An equation whose truth depends on the value of the variables

involved is called a conditional equation. To solve a conditional equation means

to find those values of the variables for which the equation is true. These values

are called solutions (or roots) of the equation. To check the solutions of the

equation means that we insert the values of the possible solutions one-by-one into

the original equation and check if the resulting equation is true or not. Only those

values are accepted as solutions of the original equation which give a true equality

when checked.
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Definition 3.5. Two equations that have the same solutions are called equi-

valent equations. Transformations that modify an equation to an equivalent

equation are called equivalent transformations of the equation. We say that

two equations are in consequential relation to each other, if all solutions of the

first one are also solutions to the other one.

Equivalent Transformations of Equations

1). Equivalent transformation of the algebraic expression on the left hand side

2). Equivalent transformation of the algebraic expression on the right hand side

3). Adding the same number or algebraic expression to both sides

a = b ⇐⇒ a + c = b + c

4). Subtracting the same number or algebraic expression from both sides

a = b ⇐⇒ a − c = b − c

5). Multiplying both sides by the same non-zero number or non-zero algebraic

expression

a = b ⇐⇒ ac = bc with c 6= 0

6). Dividing both sides by the same non-zero number or non-zero algebraic exp-

ression

a = b ⇐⇒ a

c
=

b

c
with c 6= 0

Remark. The restriction c 6= 0 when multiplying an equation by c is important in

order to get an equivalent equation. If we omit this restriction, then the resulting
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equation will posses all solutions of the original equation (i.e. the two equations

will be in consequential relation), however it may also posses solutions which are

not solutions to the original equation. Such solutions are called ??? solutions.

Convention. Whenever writing a set of equations below each other we make the

convention that this means that they are in consequential relation, unless said

otherwise. So it is compulsory to check the solutions.

In many countries the convention is different, i.e. the equations written below

each other are equivalent to each other, and then it is not necessary to check

the solutions. However, since in Hungary we use the above convention, thus it is

necessary to check the solutions, unless we mention at the beginning of the solution

that we are doing equivalent transformations.

For the rest of this chapter we restrict our investigation to equations in one

variable. In the sequel (in this Chapter and Chapter 5) we present methods to solve

several kinds of equations, like linear equations, quadratic equations, equations

containing absolute values, irrational equations, etc.

3.2 Linear Equations

Definition 3.6. An equation is called a linear equation (or an equation of

degree one) if it is equivalent to an equation of the form

ax + b = 0 where a, b are constants, and a 6= 0.
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Method of solving linear equations

1). Multiply the equation by the least common multiple of all denominators

appearing in the equation.

2). Simplify the algebraic expressions on both sides of the equation.

3). Add and subtract suitable expressions so that all terms containing the

variables be on the left hand side, and all the terms free of the variable

to the right hand side.

4). Add the like terms in both sides to get an equation of the shape cx = d

5). If the coefficient c of x in the left hand side is non-zero, then

divide by it, to get the single solution of the equation, otherwise decide

if the equation is a contradiction or an identity.

6). If there is a single solution check that solution, if there are infinitely

many solutions put the necessary conditions and mention that we have

used only equivalent transformations.

Example. • Solve the following linear equation over the real numbers

x − 2

3
+

x

4
= 4
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Solution. We follow the general strategy described above:

x − 2

3
+

x

4
= 4 / · 12

4(x − 2) + 3x = 48

4x − 8 + 3x = 48

7x − 8 = 48 / + 8

7x = 56 / : 7

x = 8

Finally, we have to check the result:

8 − 2

3
+

8

4
= 4

2 + 2 = 4 true

So the solutionset is S = {8}.

• Solve the following linear equation over the real numbers

x − 2

3
+

x

4
= 4 +

7x

12

Solution. We follow the general strategy described above:

x − 2

3
+

x

4
= 4 +

7x

12
/ · 12

4(x − 2) + 3x = 48 + 7x

4x − 8 + 3x = 48 + 7x

7x − 8 = 48 + 7x / + 8 − 7x

0 = 56 contradiction

So there is no solution to this equation, i.e. the solutionset is the emptyset:

S = ∅.
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• Solve the following linear equation over the real numbers

x − 2

3
+

x

4
=

7x − 8

12

Solution. We follow the general strategy described above:

x − 2

3
+

x

4
=

7x − 8

12
/ · 12

4(x − 2) + 3x = 7x − 8

4x − 8 + 3x = 7x − 8

7x − 8 = 7x − 8 / + 8 − 7x

0 = 0 identity

We have used equivalent transformations, and our equation reduces to an

identity, which means that every real number for which the original equation

is defined (i.e. the expressions in the equation have sense) is a solution to

this equation. In our case every expression in the original equation has sense

for every real number.

This means the solutionset is the whole set of real numbers: S = R.

• Solve the following linear equation over the real numbers

x − 2

3x
+

1

4
=

7x − 8

12x

Solution. First we have to put conditions:

3x 6= 0 and 12x 6= 0

which leads to x ∈ R \ {0}.
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Now we follow the general strategy described above:

x − 2

3x
+

1

4
=

7x − 8

12x
/ · 12x 6= 0

4(x − 2) + 3x = 7x − 8

4x − 8 + 3x = 7x − 8

7x − 8 = 7x − 8 / + 8 − 7x

0 = 0 identity

We have used equivalent transformations, and our equation reduces to an

identity, which means that every real number for which the original equation

is defined (i.e. the expressions in the equation have sense) is a solution to

this equation. This means the solutionset is S = R \ {0}.

• Solve the following equation over the real numbers

(x + 3) · (3x − 12) = 0.

Solution. This equation is clearly not a linear equation. However, using

properties of real numbers it can be reduced to two linear equations. Indeed,

by Theorem 1.4 a product may be 0 only if one of its factors equals 0. By

this, our equation can be replaced by the below two linear equations:

x + 3 = 0 or 3x − 12 = 0.

We solve both equations separately:

x + 3 = 0 / + (−3)

x = −3
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and

3x − 12 = 0 / + 12

3x = 12 / : 3

x = 4

Now we check the solutions of both equations above, by substituting them

into the original equation:

(−3 + 3) · (3(−3) − 12) = 0 true,

and

(4 + 3) · (3 · 4 − 12) = 0 true.

So the set of solution of our original equation is S = {−3, 4}.

• Solve the following equation in x ∈ R:

(2x − 1)(x + 1) − (x + 2)2 + 1 = (x + 1)(x − 1)

Solution. This equation again seems not to be a linear equation. However,

when we simplify the expressions in our equation, we shall see that it reduces

to a linear equation:

2x2 − x + 2x − 1 − x2 − 4x − 4 + 1 = x2 − 1

x2 − 3x − 4 = x2 − 1 /x2 + 4

− 3x = 3 / : 3

x = −1.

We check the solution x = −1:

2 · (−1)2 − (−1) + 2(−1) − 1 − (−1)2 − 4(−1) − 4 + 1 = (−1)2 − 1 true
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so we get the set of solutions

S = {−1}.

• Solve the following equation in x ∈ Z:

3x − 4 = 0 x ∈ Z.

Solution. We follow the general strategy:

3x − 4 = 0 / + 4

3x = 4 / : 3

x =
4

3
6∈ Z

S = ∅

Although formally the equation is true for x = 4
3
, this is not a solution, since

in this problem we have to search only for integer solutions, i.e. x must

be an element of Z. Since the only possible solution does not fulfill this

requirement the original equation has solution set S = ∅.
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Exercise 3.1. Solve the following linear equations:

a) 4x − 3 = 2x + 5 in x ∈ R

b) 6x − 5 = 4x + 3 in x ∈ R

c) 3x − 1 = x + 5 in x ∈ N

d) 4x − 1 = 3(x + 1) in x ∈ R

e) 5x − 2 = 4(x − 2) + x + 2 in x ∈ Q

f) 4(x − 2) − x = 3(x + 1) in x ∈ Q

g) 4(x − 3) − 3(1 − x) = 3x + 1 in x ∈ Z

h) 4(x − 2) − 2(1 − x) = 3(2 − x) + 1 in x ∈ Z

i 4(x − 2) − 2(1 − x) = 3(2 − x) + 1 in x ∈ Q

j)
x + 8

6
− 2x − 1

5
= 2 in x ∈ R

k)
x − 2

3
− 2x − 1

4
=

x + 1

6
− x in x ∈ R

l) (x − 2)2 + 2(x + 3)(x − 3) = 3(x + 1)2 + 3 in x ∈ Z

m) (x − 3)2 + 2(x + 1)(x − 1) = 3(x − 1)2 + 15 in x ∈ R

n)
x − 5

2
− 3x − 1

4
=

2x + 2

3
− 3 in x ∈ Q

o) 12 − (x − 5) = 20 − (9 − x) in x ∈ N

p) 15(x + 18) = 2(x + 1) + 3(x − 1) in x ∈ Q

q) 2x − 3

5
x =

(
3

2
x − 1

2

)

+

(

2 − 2

5
x

)

in x ∈ R

r)
x + 3

4x
− 1

2
=

x − 1

12x
+

1

12
in x ∈ R

s) (x + 3)(2x − 5) = 0 in x ∈ R

t) (x − 4)(5x − 3) = 0 in x ∈ Z

u) (x + 2)(4x − 2)(2x + 6) = 0 in x ∈ R
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3.3 Quadratic equations

Definition 3.7. An equation is called a quadratic equation (or an equation

of degree two) if it is equivalent to an equation of the form

ax2 + bx + c = 0 where a, b, c are constants, and a 6= 0.

The quantity ∆ := b2 − 4ac is called the discriminant of the above equation.

Theorem 3.8. (The ”almighty formula”)

Let a, b, c be real numbers with a 6= 0. Consider the equation

ax2 + bx + c = 0 where a, b, c are constants, and a 6= 0. (3.1)

Then, depending on the sign of the discriminant ∆ := b2 − 4ac of the equation we

have the following possibilities:

1). if ∆ < 0 then equation (3.1) has no real solution;

2). if ∆ = 0 then equation (3.1) has two coinciding real solutions, namely

x1 = x2 =
−b

2a

(Sometimes we simply say that equation (3.1) has one real solutions,

however this is a somewhat clumsy phrasing);

3). if ∆ > 0 then equation (3.1) has two distinct real solutions, namely

x1,2 =
−b ±

√
b2 − 4ac

2a
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Proof. To solve equation (3.1) first we do the following equivalent transformations:

ax2 + bx + c = 0

a

(

x2 +
b

a
x +

c

a

)

= 0

a

((

x2 + 2
b

2a
x +

(
b

2a

)2
)

−
(

b

2a

)2

+
c

a

)

= 0

a

(

x +
b

2a

)2

− b2 − 4ac

4a
= 0

a

(

x +
b

2a

)2

=
b2 − 4ac

4a
(

x +
b

2a

)2

=
b2 − 4ac

4a2

Here we have to split the proof according to the sign of ∆ = b2 − 4ac.

1). If ∆ < 0 then the right hand side of the last equation is negative, meanwhile

the left hand side
(
x + b

2a

)2
is non-negative (indeed, it is the square of a real

number). This is clearly a contradiction, sine a non-negative number is never

equal to a negative one.

2). If ∆ = 0 then the right hand side of the last equation is 0 and we get

(

x +
b

2a

)2

= 0

which clearly gives

x1 = x2 = − b

2a
.

3). If ∆ > 0 then b2−4ac
4a2 > 0 and by taking square root of both sides we get

∣
∣
∣
∣
x +

b

2a

∣
∣
∣
∣
=

√
b2 − 4ac

2|a| ,
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which in turn gives

x +
b

2a
= ±

√
b2 − 4ac

2a

and we get the desired result

x1,2 =
−b ±

√
b2 − 4ac

2a
.

General strategy for solving quadratic equations

1). We transform the equation by equivalent transformations to the form

ax2 + bx + c = 0.

2). We compute the discriminant of the resulting equation and we decide

if the equation has solutions or not.

3). We use the almighty formula to compute the solutions.

Example. Solve the following quadratic equations:

1). x2 − 3x + 2 = 0

The coefficients are a = 1, b = −3, c = 2. The discriminant is

∆ = b2 − 4ac = (−3)2 − 4 · 1 · 2 = 9 − 8 = 1 > 0.

Since ∆ is positive the equation has two solutions, which can be computed

by the ”almighty formula”:

x1,2 =
−b ±

√
∆

2a
=

−(−3) ±
√

1

2 · 1 =
3 ± 1

2

3+1
2

= 2

=

::uuuuuuuuu

$$IIIIIIIII

3−1
2

= 1
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So the set of solutions of the above equation is S := {1, 2}

2). x2 + 4x + 4 = 0

The coefficients are a = 1, b = 4, c = 4. The discriminant is

∆ = b2 − 4ac = 42 − 4 · 1 · 4 = 16 − 16 = 0.

Since ∆ = 0 the equation has two coinciding solutions (or we may say that it

has only one solution), which can be computed by the ”almighty formula”:

x1 = x2 =
−b ±

√
∆

2a
=

−4) ±
√

0

2 · 1 = −2.

So the set of solutions of the above equation is S := {−2}

3). x2 + 2 = 0

The coefficients are a = 1, b = 0, c = 2. The discriminant is

∆ = b2 − 4ac = 02 − 4 · 1 · 2 = 0 − 8 = −8 < 0.

Since ∆ < 0 the equation has no real solution, i.e. the set of solutions of the

above equation is S := ∅.
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Exercise 3.2. Solve the following quadratic equations in x ∈ R:

a) x2 − 1 = 0 b) x2 − 25 = 0

c) x2 − 2 = 0 d) x2 + 3 = 0

e) x2 − 3x = 0 f) x2 + 5x = 0

g) x2 − 2x + 1 = 0 h) x2 − 4x + 3 = 0

i) − x2 + 5x − 4 = 0 j) x2 + 7x + 12 = 0

k) − x2 − 2x + 3 = 0 l) x2 + 5x − 6 = 0

m) x2 − 5x − 6 = 0 n) − x2 − 6x − 9 = 0

o) x2 + x + 1 = 0 p) − x2 + x − 3 = 0

q) 2x2 − 3x + 1 = 0 r) 6x2 − x − 2 = 0

s) 15x2 − 11x − 12 = 0 t) 6x2 + 27x + 30 = 0

u) x2 + x − 4 = 0 v) x2 − x + 4 = 0

w) 3x2 − 2x + 1 = 0 x) 4x2 − 4x + 1 = 0

y) 9x2 + 12x + 4 = 0 z) 4x2 − 28x + 49 = 0
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Exercise 3.3. Solve the following quadratic equations in x ∈ R:

a) 2(x + 1)2 − 5(x + 3) + 7 = 0

b) (x + 3)2 − 2(x + 1)(x + 2) = 0

c) (x + 2)3 − (x + 1)(x2 + 2) − 4(x + 1)(x − 1) − 3x + 2 = 0

d) (x − 3)2 − 2(x + 1)(x + 2) + 10x + 10 = 0

e) (x + 4)2 − 2(x − 1)(x + 2) + 10x − 84 = 0

f) (x − 5)2 + 2(x + 3)(x + 2) + 3x − 34 = 0

g)
2

x2 − 4
− 1

x(x − 2)
+

x − 4

x(x + 2)

h)
1

x − 1
+

2

x − 2
+

3

x − 3
=

6

x + 6

i)
1

4x + 8
=

20x + 1

4x2 − 16
− 7 − 5x

x2 − 4x + 4

j)
1

x2 − x
+

1

x2 − 3x + 2
− 1

x − 2
= 0
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Chapter 4

Inequalities

4.1 Introduction to inequalities

Definition 4.1. An inequality is a statement that an algebraic expression is

smaller then (or larger than, or smaller or equal to or larger or equal to) another

algebraic expression.

Example. By the above definition the statement

1 < 2

is an inequality, however, in algebra we are more interested in inequalities which

contain variables (i.e. letters). The following statements are also examples of

inequalities:

3x > x + 2 x2 + y2 ≤ 1
√

x2 + 1 ≤ 3 |x| ≥ 3

Example. Similarly to the case of equations, here are three examples of inequa-

lities which look completely similar:

85
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1). 3x + 4 − 3(x + 3) + 5 < 1,

2). 3x + 4 − 3(x + 3) + 5 < 0,

3). 3x + 4 − 2(x + 3) + 2 < 0.

However, if we simplify the left hand sides of the above equations we get

1). 0 < 1,

2). 0 < 0,

3). x < 0.

So we can see that we may have three completely different situations:

1). the inequality is true for all possible values of x,

2). the inequality is false for all possible values of x,

3). the inequality is true for a part of the possible values of x, so the truth of

the inequality depends on the value of x.

The above example justifies to give separate names for such inequalities, as

we shall do it in the definitions below. The names given to the different types of

inequalities are the same like names of the corresponding cases of equations.

Definition 4.2. An inequality which is always false, independently of the value

of the variables involved, is called a contradiction.

Definition 4.3. An inequality which is always true, independently of the value of

the variables involved, is called an identity.
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Definition 4.4. An inequality whose truth depends on the value of the variables

involved is called a conditional inequality. To solve a conditional inequality

means to find the set of those values of the variables for which the equation is true.

These values are called solutions of the inequality.

Definition 4.5. Two inequalities that have exactly the same set of solutions are

called equivalent inequalities. Transformations that modify an inequality to an

equivalent inequality are called equivalent transformations of the inequality.

Equivalent Transformations of Inequalities

1). Equivalent transformation of the algebraic expression on the left hand side

2). Equivalent transformation of the algebraic expression on the right hand side

3). Adding the same number or algebraic expression to both sides

a < b ⇐⇒ a + c < b + c a > b ⇐⇒ a + c > b + c

a ≤ b ⇐⇒ a + c ≤ b + c a ≥ b ⇐⇒ a + c ≥ b + c

4). Subtracting the same number or algebraic expression from both sides

a < b ⇐⇒ a − c < b − c a > b ⇐⇒ a − c > b − c

a ≤ b ⇐⇒ a − c ≤ b − c a ≥ b ⇐⇒ a − c ≥ b − c

5). Multiplying both sides by the same positive number or positive algebraic

expression

a < b ⇐⇒ ac < bc with c > 0 a > b ⇐⇒ ac > bc with c > 0

a ≤ b ⇐⇒ ac ≤ bc with c > 0 a ≥ b ⇐⇒ ac ≥ bc with c > 0
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6). Multiplying both sides by the same negative number or negative algebraic

expression and changing the direction of the inequality sign

a < b ⇐⇒ ac > bc with c < 0 a > b ⇐⇒ ac < bc with c < 0

a ≤ b ⇐⇒ ac ≥ bc with c < 0 a ≥ b ⇐⇒ ac ≤ bc with c < 0

7). Dividing both sides by the same positive number or positive algebraic expr-

ession

a < b ⇐⇒ a

c
<

b

c
with c < 0 a > b ⇐⇒ a

c
>

b

c
with c < 0

a ≤ b ⇐⇒ a

c
≤ b

c
with c < 0 a ≥ b ⇐⇒ a

c
≥ b

c
with c < 0

8). Dividing both sides by the same negative number or negative algebraic exp-

ression and changing the direction of the inequality sign

a < b ⇐⇒ a

c
>

b

c
with c < 0 a > b ⇐⇒ a

c
<

b

c
with c < 0

a ≤ b ⇐⇒ a

c
≥ b

c
with c < 0 a ≥ b ⇐⇒ a

c
≤ b

c
with c < 0

Convention. When solving inequalities, our goal is to give the set of all solutions,

i.e. that simplifying the inequality to a very simple equivalent inequality like

x < 2 is not a complete solution of the problem, since we are expected to solve

the resulting simple inequality and give the result in the form of an interval, like

x ∈] −∞, 2[ in the case of the above example.

4.2 Linear inequalities

Definition 4.6. An inequality is called a linear inequality if it is equivalent

to one of the following inequalities, where a, b ∈ R and a 6= 0

ax − b < 0 ax − b > 0

ax − b ≤ 0 ax − b ≥ 0
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Method of solving linear equations

1). Using equivalent transformations of the inequality transform it to

one of the following basic forms:
ax − b < 0 ax − b > 0

ax − b ≤ 0 ax − b ≥ 0

2). Add b to both sides of the resulting basic inequality

3). If a 6= 0 then divide the inequality by a, and if a is negative then

change the direction of the inequality sign

4). Decide if the inequality is a contradiction or an identity, and if not,

then determine the set of solutions.

Example. Solve the following inequality in x ∈ R:

4x − 3

5
− x − 4

2
< 2.

To solve the above inequality we use equivalent transformations of it as follows

4x − 3

5
− x − 4

2
< 2 / · 10 > 0

2(4x − 3) − 5(x − 4) < 20

8x − 6 − 5x + 20 < 20

3x + 14 < 20 / − 14

3x < 6 / : 3 > 0

x < 2

so the set of solutions is S :=] −∞, 2[
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Exercise 4.1. Solve the following linear inequalities:

a) 9x + 8 ≤ 15 + 7x b) 5(x − 1) + 7 < 7(x + 2) − 4

c) 4x + 12 ≤ 10 − 6(x − 2) d) 5(x + 1) − 9(x + 3) > −6(x + 2)

e)
2x − 4

−5
> 0 f)

3x + 2

4

g) − 2x + 6 ≤ 1

2
x + 1 h)

1

2
− 3x <

2

3
x − 5

i) 3x − 1

6
> 2 − 2x

3
j)

x

2
+

3x

4
>

5x

6
+ 5

k)
4x

3
+

x

6
<

3x

4
+ 3 l)

x

3
+

2x

5
>

7x

10
+ 1

m)
7x

8
− 5 ≤ 9x

10
− 8 n)

5 − z

8
>

18 − z

12

o)
5x − 4

2
<

16x + 1

7
p)

2x + 4

2
− 2 > 3(x + 2)

q)
5

3
x + 5(4 − x) < 2(4 − x) r)

7 − x

2
+ 4 <

3 + 4x

5
+ 3

s)
3x − 5

2
− 1 ≤ x − 11

5
t) 2(x − 2) ≤ 2x − 7

u) 3x − 5 ≤ 7 + 3(x − 1) v) 5x − 3(x − 2) ≥ 2(x + 3)

w) 5x − 3(x − 2) ≤ 2(x + 3) x) 6x − 3(x − 3) < 2(x + 4) + x + 1

y) 6x − 3(x − 3) > 2(x + 4) + x + 1 z) 11x − 7(x − 3) < 2(x + 4) + 2x + 1

4.3 Table of signs

A special case of the inequalities is when the left hand side is a rational algebraic

expression in a single variable and the right hand side is 0. In this case in fact we

have to determine the sign of the rational algebraic expression appearing on the

left hand side of the inequality. The result can be summarized in a so-called table

of signs.
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The table of signs is table in which:

• in the first row we list in increasing order all those values of the variable for

which the expression is 0 or has no sense;

• the last row is built such that we put 0 below the values of the variable repre-

sented in the first row, if the value of the expression at these values is 0, and

• we put a vertical line below the values of the variable represented in the first

row, if the expression has no sense at these values of the variable, and

• below the intervals determined by the consecutive values represented in the

first row we write + signs if the expression is positive over this interval, and

− signs if the expression is negative over this interval;

• in the optional intermediate rows we represent the sign of factors of the

numerator or denominator of the expression, which rows help us to determine

the sign of the whole expression.

Remark. The above described table of signs is used for analyzing the sign of

more complicated expressions, however there are several variants of the idea of

table of signs, which are used to different tasks in algebra. Later we shall see how

to simplify the solution of equations containing absolute values with the help of a

table of signs.

In the sequel we shall present basic tables of signs which completely describe the

sign of linear and quadratic expressions, and then we shall use these rules to solve

more complicated exercises.
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4.3.1 The sign of linear expressions

In this section we consider the expression ax + b with a, b ∈ R and a 6= 0, and we

prove a theorem which summarizes all possible cases for determining the sign of

this expression, depending on the values of x.

Theorem 4.7. The below simple table of signs describes the sign of the expression

ax + b where a, b ∈ R and a 6= 0.

−∞ −b
a

∞
ax + b sign opposite to the sign of a 0 sign of a sign of a

Example. Using a table of signs describe the sign of the expression 2x − 6.

Solution. Clearly 2x − 6 takes zero if and only if

2x − 6 = 0

which means that x = 3. So we have to write 3 in the first row of our table, and

then below the 3 we put 0 in the second row. We fill by − (the sign opposite to

the sign of 3) the left half of the second row, and by + (the sign of 3) the right

half of the second row.

−∞ 3 ∞
2x − 6 - - - - - - - - - - - - - - - - - - - - - 0 + + + + + + + + + + + +

Now it is easy to read the result from the above table.

Example. Using a table of signs describe the sign of the expression −2x − 10.

Solution. Clearly −2x − 10 takes zero if and only if

−2x − 10 = 0
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which means that x = −5. So we have to write −5 in the first row of our table,

and then below the −5 we put 0 in the second row. We fill by + (the sign opposite

to the sign of −5) the left half of the second row, and by − (the sign of −5) the

right half of the second row.

−∞ −5 ∞
−2x − 10 + + + + + + + + + + + + 0 - - - - - - - - - - - - - - - - - - - -

Now it is easy to read the result from the above table.

4.3.2 The sign of quadratic expressions

In this section we consider the expression ax2+bx+c with a, b, c ∈ R and a 6= 0, and

we prove a theorem which summarizes all possible cases for determining the sign

of this expression, depending on the values of x. We have to split the discussion

in three cases depending on the sign of the discriminant.

Theorem 4.8. Let ∆ := b2−4ac be the discriminant of the polynomial ax2+bx+c.

The below three simple tables of signs describe the sign of the expression ax2+bx+c

where a, b, c ∈ R and a 6= 0.

1). If the discriminant is negative, i.e. ∆ < 0, then the equation ax2 +bx+c = 0

has no real zeros, and we have

−∞ ∞
ax2 + bx + c sign of a sign of a sign of a

2). If the discriminant is zero, i.e. ∆ = 0, then the equation ax2 + bx + c = 0

has two coinciding zeros, x1 = x2, and we have
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−∞ x1 ∞
ax2 + bx + c sign of a sign of a 0 sign of a sign of a

3). If the discriminant is positive, i.e. ∆ > 0, then the equation ax2 + bx+ c = 0

has two distinct zeros, x1 < x2, and we have

−∞ x1 x2 ∞
ax2 + bx + c sign of a 0

sign opposite
to sign of a 0 sign of a

Example. Using a table of signs describe the sign of the expression x2 − 6x + 5.

Solution. Clearly x2 − 6x + 5 takes zero if and only if

x2 − 6x + 5 = 0

which means that x1 = 1 or x2 = 5. So we have to write 1 and 5 in the first row of

our table, and then below them we put 0 in the second row. We fill by − (the sign

opposite to the sign of the leading coefficient a = +1) the the second row between

the two zeros, and by + (the sign of a = +1) the two sides of the second row.

−∞ 1 5 ∞
x2 − 6x + 5 + + + + + + + + + 0 - - - - - - - - - - - 0 + + + + + + + +

Now it is easy to read the result from the above table.
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Example. Using a table of signs describe the sign of the expression −2x2 +6x−4.

Solution. Clearly −2x2 + 6x − 4 takes zero if and only if

−2x2 + 6x − 4 = 0

which means that x1 = 1 or x2 = 2. So we have to write 1 and 2 in the first row of

our table, and then below them we put 0 in the second row. We fill by + (the sign

opposite to the sign of the leading coefficient a = −2) the the second row between

the two zeros, and by − (the sign of a = −2) the two sides of the second row.

−∞ 1 2 ∞
−2x2 + 6x − 4 - - - - - - - - - - - - - - - - 0 + + + + + + + 0 - - - - - - - - - - - - - -

Now it is easy to read the result from the above table.

Example. Using a table of signs describe the sign of the expression 2x2 + 8x + 8.

Solution. Clearly 2x2 + 8x + 8 takes zero if and only if

2x2 + 8x + 8 = 0

which means that x1 = x2 = −2. So we have to write −2 in the first row of our

table, and then below the −2 we put 0 in the second row. Finally, we fill by +

(the sign of the leading coefficient a = 2) the the second row around the 0.

−∞ −2 ∞
2x2 + 8x + 8 + + + + + + + + + + + + 0 + + + + + + + + + + + +

Now it is easy to read the result from the above table.
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Example. Using a table of signs describe the sign of the expression −x2 +6x− 9.

Solution. Clearly −x2 + 6x − 9 takes zero if and only if

−x2 + 6x − 9 = 0

which means that x1 = x2 = 3. So we have to write 3 in the first row of our table,

and then below the 3 we put 0 in the second row. Finally, we fill by − (the sign

of the leading coefficient a = −1) the the second row around the 0.

−∞ 3 ∞
−x2 + 6x − 9 - - - - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - - - - - - - - - -

Now it is easy to read the result from the above table.

Example. Using a table of signs describe the sign of the expression 2x2 + x + 2.

Solution. Clearly 2x2 + x + 2 takes zero if and only if

2x2 + x + 2 = 0,

however, computing the discriminant of this equation we get ∆ = 12 − 4 · 2 · 2 =

−15 < 0, so this equation has no real solutions. Thus we do not write anything in

the first row of our table (except for −∞ and ∞ at the two ends), and we fill by

+ (the sign of the leading coefficient a = 2) the the second row.

−∞ ∞
2x2 + x + 2 + + + + + + + + + + + + + + + + + + + + + + +

Now it is easy to read the result from the above table.

Example. Using a table of signs describe the sign of the expression −x2 + x− 1.

Solution. Clearly −x2 + x − 1 takes zero if and only if

−x2 + x − 1 = 0,
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however, computing the discriminant of this equation we get ∆ = 12 − 4 · (−1) ·
(−1) = −3 < 0, so this equation has no real solutions. Thus we do not write

anything in the first row of our table (except for −∞ and ∞ at the two ends), and

we fill by − (the sign of the leading coefficient a = −1) the the second row.

−∞ ∞
−x2 + x − 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Now it is easy to read the result from the above table.

4.4 Quadratic inequalities

Strategy of solving quadratic inequalities

1). First we transform the inequality to the form ax2 + bx + c with

a, b, c ∈ R and a 6= 0.

2). We use the tables of signs described in Theorem 4.8 to analyze

the sign of the expression ax2 + bx + c.

3). We read the result from the above-mentioned table of signs.

Example. Solve the following inequality in real values of x

−x2 + 5x − 6 ≤ 0.

Solution. We build a table of sings to describe the sign of the expression −x2+5x−6

Clearly −x2 + 5x − 6 takes zero if and only if

−x2 + 5x − 6 = 0



98 CHAPTER 4. INEQUALITIES

which means that x1 = 2 or x2 = 3. So we have to write 2 and 3 in the first row

of our table, and then below them we put 0 in the second row. Finally, we fill by

+ (the sign opposite to the sign of the leading coefficient a = −1) the second row

between the two zeros, and by − (the sign of a = −1) the two sides of the second

row.

−∞ 2 3 ∞
−x2 + 5x − 6 - - - - - - - - - - - - - - - - 0 + + + + + + + 0 - - - - - - - - - - - - - -

So the solution to our inequality is

x ∈ ]−∞, 2] ∪ [3,∞[ .

Example. Solve the following inequality in real values of x

−x2 + 5x − 6 < 0.

Solution. We build the very same table of sings to describe the sign of the expres-

sion −x2 + 5x − 6, as in the previous example, and now we read the result

x ∈ ]−∞, 2[ ∪ ]3,∞[ .

4.4.1 Graphical approach of quadratic inequalities

We reconsider the previos example.

Example. Solve the following inequality in real values of x

−x2 + 5x − 6 < 0.

Solution. Completing the square we have

−x2 + 5x − 6 = −(x − 2.5)2 +
1

4
.
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Figure 4.1: Graph of the function x2

We have to give the graph of f(x) = −x2 + 5x − 6 = −(x − 2.5)2 + 1
4
. First we

get the graph of f1(x) = x2, see Figure 4.1. As the second step we yield the graph

of f2(x) = (x − 2.5)2 on the Figure 4.2. Now one can easily obtain the graph of

f3(x) = −(x − 2.5)2, see Figure 4.3. Finally, Figure 4.4 shows tha graph of the

original quadratic function. One can see that the set of solutions to the inequality

−x2 + 5x − 6 < 0

is x < 2 or x > 3.
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Figure 4.2: Graph of the function (x − 2.5)2
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Figure 4.3: Graph of the function −(x − 2.5)2
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Figure 4.4: Graph of the function −(x − 2.5)2 + 1
4
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Exercise 4.2. Solve the following inequality in real values of x:

a) x2 − 4x + 3 > 0 b) 2x2 + 6x + 4 ≥ 0

c) − 2x2 − 10x − 6 > 0 d) x2 + x − 6 ≤ 0

e) x2 − 4 ≥ 0 f) − x2 + 9 > 0

g) x2 − 2x + 1 ≥ 0 h) − x2 + 6x − 9 ≥ 0

i) 2x2 + 8x + 8 > 0 j) − x2 − 8x − 10 < 0

k) x2 − x + 1 < 0 l) x2 − x + 1 ≥ 0

m) x2 − x + 1 > 0 n) − x2 + x − 3 ≤ 0

o) − x2 − 3 ≥ 0 p) − x2 − x − 1 < 0

4.5 Solving inequalities using table of signs

Example. Solve the following inequality in x ∈ R:

(x − 2)(3 − x)(x2 − x + 1)

(x2 + 4x + 3)(−x + 1)(x + 3)
≤ 0

Solution. We shall use table of signs. To do that we first solve all factors of the

numerator and the denominator for zero:

x − 2 = 0 3 − x = 0 x2 − x + 1 = 0 x2 + 4x + 3 − x + 1 x + 3

x1 = 2 x2 = 3 x 6∈ R x3,4 = −1;−3 x5 = 1 x6 = −3

We insert all these solutions in the first row of the table in increasing order. Then

we analyze the sign of these factors using separate rows of a joint table of signs,

and finally, in the last row we compute the sign of the algebraic expression

F :=
(x − 2)(3 − x)(x2 − x + 1)

(x2 + 4x + 3)(−x + 1)(x + 3)

composed using these factors. In the last row, below the separating points x1, x2, . . .

we put 0 if no factor of the denominator vanishes at that number, and we put a
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vertical line if the number in question is a zero of a factor of the denominator.

The vertical line means that F has no sense, and the 0 means that F = 0 at the

number which is in the first row above the vertical line, and the 0, respectively.

−∞ −3 −1 1 2 3 ∞
x − 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 + + + + + + + + +

3 − x + + + + + + + + + + + + + + + + + + + + + + 0 - - - - - - - -

x2 − x + 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

x2 + 4x + 3 + + + + 0 - - - - - 0 + + + + + + + + + + + + + + + + +

−x + 1 + + + + + + + + + + + + + + 0 - - - - - - - - - - - - - - - - - - - - -

x + 3 - - - - - - - 0 + + + + + + + + + + + + + + + + + + + + + +

F - - - - - - - | - - - - - | + + + | - - - - - 0 + + + 0 - - - - - - - -

Finally we have to read the result from the table of signs: F ≤ 0 for those

values of x which are from intervals (represented in the first row) being above −
signs of the last row. The intervals are closed if the endpoint of the interval is

above a zero of the last row. So the solution of our example is:

x ∈ ]−∞,−3[ ∪ ]−3,−1[ ∪ ]1, 2] ∪ [3,∞[

Exercise 4.3. Solve the following inequalities in x ∈ R:

a)
(x − 5)(3 + x)(x2 − 3x + 2)

(x2 + 4x + 3)(−x + 4)(x − 7)
> 0 b)

(x + 3)(7 − x)(−x2 − x − 1)

(x2 − 4x + 3)(−x + 1)(2x + 10)
≥ 0

c)
(−4x − 2)(8 − 2x)(x2 − 2x + 1)

(x2 + 4x + 5)(−x − 1)(2x + 6)
≤ 0 d)

(3x − 9)(3 + 3x)(−x2 + x − 1)

(x2 + 4x + 4)(−x + 1)(2x + 6)
> 0

e)
(−x + 5)(3 + x)(x2 − 5x − 6)

(2x2 − 10x + 12)(x + 8)(−x + 4)
≤ 0 f)

(−x − 2)(5 + x)(−x2 − x + 2)

(x2 + 7x + 12)(−2x + 8)(x + 7)
≥ 0



Chapter 5

Equations II

5.1 Equations containing absolute values

When we have to solve equations containing absolute values in most case we have

to ”get rid” of the absolute values involved, and solve the resulting equations. The

way we can ”get rid” of the absolute values is to use the formula

|g(x)| =







g(x) if g(x) ≥ 0

−g(x) if g(x) ≤ 0.

However, this means that we have to split the solution into subcases, depending

on the sign of the expressions appearing in absolute value. For instance, in the

case of equation

|x − 1| + |x − 3| = 10

105
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for the first sight it seems that we have to distinguish four cases, according to the

sign of x − 1 and x − 3:






x − 1 ≤ 0

x − 3 ≤ 0







x − 1 ≤ 0

x − 3 ≥ 0







x − 1 ≥ 0

x − 3 ≤ 0







x − 1 ≥ 0

x − 3 ≥ 0.

However, a more careful analysis shows that the second system of inequalities has

no solutions, so we do not have to consider this case. If the number of expressions

appearing in absolute value is larger, then the cases to consider ”a priori” is even

larger, and also the cases where the solution set of the system of inequalities is the

emptyset will increase. This situation can be handled much easier with the help

of a table of signs. Let us solve step by step the above equation:

Example. Solve the following equation in x ∈ R

|x − 1| + |x − 3| = 10

Solution. We shall do equivalent transformations. We have to get rid of the

absolute values by the formulas

|x − 1| =







(x − 1) if x − 1 ≥ 0

−(x − 1) if x − 1 ≤ 0.

|x − 3| =







(x − 3) if x − 3 ≥ 0

−(x − 3) if x − 3 ≤ 0.

We build a table of signs containing all expressions appearing in absolute value:

x − 1 = 0 x − 3 = 0

x1 = 1 x2 = 3

−∞ 1 3 ∞
x − 1 - - - - - - - - - - - - 0 + + + + + + + + + + + +

x − 3 - - - - - - - - - - - - - - - - - - - - - - 0 + + + + + +



5.1. EQUATIONS CONTAINING ABSOLUTE VALUES 107

Now we split the solution into subcases. We have to consider all intervals

appearing in the first row of the table of signs (namely 3 intervals). The easiest

way is to take closed ending at each finite endpoint of each interval, this way

considering these numbers twice. However, it is more elegant to consider each

number only once, and here we shall take care of this. It is very important that

a solution of the resulting equation in a subcase is accepted as a solution of the

original equation only if the solution is an element of the defining interval of that

very case. Indeed, otherwise the absolute values would have been computed by

another formula, and that number should be a solution of a different equation.

Case 1. If x ∈ ]−∞, 1[ := I1 then

− (x − 1) + (−(x − 3)) = 10

− (x − 1) − (x − 3) = 10

− x + 1 − x + 3 = 10

− 2x = 6

x = −3 ∈ I1

Since the solution we got is inclu-

ded in the interval defining Case 1,

thus the solution set of the first

case is

S1 = {−3}

Case 2. If x ∈ [1, 3[ := I2 then

(x − 1) + (−(x − 3)) = 10

(x − 1) − (x − 3) = 10

x − 1 − x + 3 = 10

0 = 8 contradiction

So the solution set of the second

case is

S2 = ∅

Case 3. If x ∈ [3,∞[ := I3 then

(x − 1) + (x − 3) = 10

(x − 1) + (x − 3) = 10

x − 1 + x − 3 = 10

2x = 14

x = 7 ∈ I3
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So the solution set of the third case

is

S3 = {7}

To get the complete solution set of

the equation we have to join the sets of

solutions of the above subcases, i.e.

S = S1 ∪ S2 ∪ S3 = {−3, 7}

Example. Solve the following equation in x ∈ R:

|x + 1| + |x − 2| + |3 − x| = 6.

Solution. We shall do equivalent transformations. We have to get rid of the

absolute values by the formulas

|x + 1| =







(x + 1) if x + 1 ≥ 0

−(x + 1) if x + 1 ≤ 0.

|x − 2| =







(x − 2) if x − 2 ≥ 0

−(x − 2) if x − 2 ≤ 0.

|3 − x| =







(3 − x) if 3 − x ≥ 0

−(3 − x) if 3 − x ≤ 0.

We build a table of signs containing all expressions appearing in absolute value:

x + 1 = 0 x − 2 = 0 3 − x = 0

x1 = −1 x2 = 2 x3 = 3

−∞ -1 2 3 ∞
x + 1 - - - - - - - - - - - - 0 + + + + + + + + + + + + + + + + + +

x − 2 - - - - - - - - - - - - - - - - - - - - - - 0 + + + + + + + + + + + +

3 − x + + + + + + + + + + + + + + + + + + + 0 - - - - - - - - - - -
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We split the solution into subcases. We have to consider all intervals appearing

in the first row of the table of signs (namely 4 intervals).

Case 1. If x ∈ ]−∞,−1[ := I1 then

− (x + 1) − (x − 2) + (3 − x) = 6

− x − 1 − x + 2 + 3 − x = 6

− 3x = 2

x = −2

3
6∈ I1

Since the solution we got is not in

the interval defining Case 1, thus

the solution set of the first case is

S1 = ∅.

Case 2. If x ∈ [−1, 2[ := I2 then

(x + 1) − (x − 2) + (3 − x) = 6

x + 1 − x + 2 + 3 − x = 6

− x = 0

x = 0 ∈ I2

So the solution set of the second

case is

S2 = {0}.

Case 3. If x ∈ [2, 3[ := I3 then

(x + 1) + (x − 2) + (3 − x) = 6

x = 4 6∈ I3

So the solution set of the third case

is

S3 = ∅

Case 4. If x ∈ [3,∞[ := I4 then

(x + 1) + (x − 2) − (3 − x) = 6

x + 1 + x − 2 − 3 + x = 6

3x = 10

x =
10

3
∈ I4

So the solution set of the third case

is

S4 =

{
10

3

}

To get the complete solution set of the equation we have to join the sets of

solutions of the above subcases, i.e.

S = S1 ∪ S2 ∪ S3 ∪ S4 =

{

0,
10

3

}
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Figure 5.1: Graph of the function |x + 1| + |x − 2| + |3 − x| − 6

For the graph of |x + 1| + |x − 2| + |3 − x| − 6 see Figure 5.1

Example. Solve the following equation in x ∈ R

|x − 1| + |x + 1| = 2.

Solution. We shall do equivalent transformations. We have to get rid of the

absolute values by the formulas

|x − 1| =







(x − 1) if x − 1 ≥ 0

−(x − 1) if x − 1 ≤ 0.

|x + 1| =







(x + 1) if x + 1 ≥ 0

−(x + 1) if x + 1 ≤ 0.



5.1. EQUATIONS CONTAINING ABSOLUTE VALUES 111

We build a table of signs containing all expressions appearing in absolute value:

x − 1 = 0 x + 1 = 0

x1 = 1 x2 = −1

−∞ -1 1 ∞
x − 1 - - - - - - - - - - - - - - - - - - - - - - 0 + + + + + +

x + 1 - - - - - - - - - - - - 0 + + + + + + + + + + + +

Now we split the solution into subcases. We have to consider all intervals

appearing in the first row of the table of signs (namely 3 intervals).

Case 1. If x ∈ ]−∞,−1[ := I1 then

− (x − 1) + (−(x + 1)) = 2

− x + 1 − x − 1 = 2

− 2x = 2

x = −1 6∈ I1

Since the solution we got is not in

the interval defining Case 1, thus

the solution set of the first case is

S1 = ∅.

Case 2. If x ∈ [−1, 1[ := I2 then

− (x − 1) + (x + 1) = 2

− x + 1 + x + 1 = 2

0 = 0 identity

So the solution set of the second

case is the whole interval I2:

S2 = I2 = [−1, 1[ .

Case 3. If x ∈ [1,∞[ := I3 then

(x − 1) + (x + 1) = 2

2x = 2

x = 1 ∈ I3

So the solution set of the third case
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Figure 5.2: Graph of the function |x − 1| + |x + 1| − 2

is

S3 = {1}

To get the complete solution set of

the equation we have to join the sets of

solutions of the above subcases, i.e.

S = S1 ∪ S2 ∪ S3 = [−1, 1]

For the graph of |x − 1| + |x + 1| − 2 see Figure 5.2

5.2 Polynomial equations of higher degree

We have a simple procedure to solve linear equations, and the almighty formula

allows us to solve easily quadratic equations. To solve polynomial equations of
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higher degree is much harder. For cubic and quartic equations there exist formulas,

but these are very complicated. The present knowledge of the reader of this book

makes it possible to solve polynomial equations of higher degree only if the equation

is of some special shape, which allows the use of some clever method, to reduce

the degree of the equation. In the present section we show the most important

types of such equations.

5.2.1 Solving polynomial equations by finding rational ro-

ots

In this subsection we will solve polynomial equations of higher degree with inte-

ger coefficients by reducing their degree via finding their rational solutions. The

following theorem makes possible to find all rational solutions, and if we are lucky

to have enough rational solutions, maybe we can completely solve our equation.

Theorem 5.1. (The rational root theorem) Let P (x) ∈ Z[x] be a polynomial

with integer coefficients, having the form

P (x) = anx
n + an−1x

n−1 + · · · + a1x + a0.

If a rational number u
v

∈ Q (u, v ∈ Z, v 6= 0) in its lowest terms (i.e. with

gcd(u, v) = 1) is a solution to the equation

P (x) = 0

then the numerator u is a divisor of the free term a0 (u | a0) and the denominator

v is a divisor of the leading coefficient an (v | an).

As special cases of the above Theorem 5.1, we get the following corollaries:
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Corollary 5.2. (The integer root theorem) Let P (x) ∈ Z[x] be a polynomial

with integer coefficients, having the form

P (x) = anx
n + an−1x

n−1 + · · · + a1x + a0.

If an integer u ∈ Z is a solution to the equation

P (x) = 0

then u is a divisor of the free term a0, i.e. u | a0.

Corollary 5.3. (The rational root theorem for monic polynomials) Let

P (x) ∈ Z[x] be a polynomial with integer coefficients, having the form

P (x) = xn + an−1x
n−1 + · · · + a1x + a0.

If a rational number r ∈ Q is a solution to the equation

P (x) = 0

then r is an integer and it is a divisor of the free term a0 (r | a0).

Example. Solve the following equation in real values of x:

x4 − x3 − 6x2 + 14x − 12 = 0 (5.1)

Solution. We try to find rational solutions of this equation using Corollary 5.3.

If equation (5.1) has a rational root x1 then it is also integer, and it divides

−12, i.e. we have

x1 | (−12) =⇒ x1 ∈ {±1,±2,±3,±4,±6,±12}.

Now we try which of these is a solution of (5.1), if any. We do this using Horner’s

scheme:
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1 −1 −6 14 -12

1 1 0 −6 8 −4

−2 1 −3 0 14 −40

2 1 1 −4 6 0

So after trying 1 and −2 which are not solutions (the last value in the corresponding

Horner’s scheme is non-zero), we find that x1 = 2 is a solution of (5.1), and the

polynomial x4 −x3 − 6x2 +14x− 12 can be factorized as (x− 2)(x3 +x2 − 4x+6),

which means the (5.1) takes the form

(x − 2)(x3 + x2 − 4x + 6) = 0.

Since a product may be zero only if one of its factors is zero, thus we either have

x − 2 = 0, which gives the expected solution

x1 = 2,

or we have

x3 + x2 − 4x + 6 = 0. (5.2)

This is a completely similar equation to the original equation (5.1), just its degree

is smaller. So we try the same procedure again.

If equation (5.2) has a rational root x2 then it is also integer, and it divides 6,

i.e. we have

x2 | 6 =⇒ x2 ∈ {±1,±2,±3,±4,±6}.

We try which of these is a solution of (5.1), if any. We do this again using Horner’s

scheme:

1 1 −4 6

2 1 3 2 10

−3 1 −2 2 0
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Clearly, it is nonsense to try again x = −2 or x = 1, since if it was no root of the

original polynomial, then it cannot be a root of one of its factors. On the other

hand, we should try x = 2 again, since it could be a double root of the original

polynomial. However, in this exercise this is not the case, and x = 2 is not a

solution of (5.2). On the other hand we find that x = −3 is a solution of (5.2),

and thus also of (5.1). More precisely, (5.2) may be written as

(x + 3)(x2 − 2x + 2) = 0,

which either gives the solution

x2 = −3,

or it leads to the quadratic equation

x2 − 2x + 2 = 0,

which has discriminant ∆ = −4, so it has no real solutions. Thus the set of

solutions of the (5.1) is

S = {−3, 2}.
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Figure 5.3: Graph of the polynomial x4 − x3 − 6x2 + 14x − 12
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The strategy of solving polynomial equations having rational so-

lutions

1). Using Theorem 5.1 (or one of its Corollaries) we determine

which are the possible rational solutions of the equation.

2). Then using Horner’s scheme we try to decide if any of the above

determined rational numbers is a solution.

3). If we find a solution we divide by the the corresponding linear factor,

and we reduce the original equation to a similar equation of smaller

degree.

4). We repeat the procedure to this equation.

5). We repeat the above steps until (hopefully) we get an equation which

we can solve directly.
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Exercise 5.1. Solve the following polynomial equations in real values of x:

a) x3 − 7x − 6 = 0

b) x4 − 4x3 − x2 + 16x − 12 = 0

c) x5 − 17x3 + 12x2 + 52x − 48 = 0

d) x4 + 2x3 − 15x2 + 4x + 20 = 0

e) x5 + 8x4 + 3x3 − 112x2 − 308x − 240 = 0

f) x6 + 3x5 − 16x4 − 25x3 + 33x2 + 52x + 60 = 0

g) x6 − 28x4 − 26x3 + 147x2 + 266x + 120 = 0

h) x6 − 28x4 − 26x3 + 147x2 + 266x + 120 = 0

i) x7 + 2x6 − 24x5 − 66x4 + 11x3 + 144x2 + 332x + 240 = 0

j) x6 − 21x4 + 31x3 + 38x2 − 79x + 30 = 0

k) x6 + 16x5 + 86x4 + 205x3 + 254x2 + 184x + 64 = 0

l) x6 − 2x5 − 44x4 − 55x3 + 154x2 + 232x + 64 = 0

m) x6 − 2x5 − 26x4 + 40x3 + 121x2 − 254x + 120 = 0

n) x7 + 3x6 − 16x5 − 35x4 + 75x3 + 56x2 − 108x + 144 = 0

o) x8 + 4x7 − 18x6 − 88x5 − 167x4 − 316x3 − 216x2 + 400x + 400 = 0

p) x6 − 6x5 + 6x4 + 18x3 − 31x2 + 24x − 36 = 0

q) x7 + 7x6 + 9x5 − 33x4 − 82x3 + 2x2 + 120x + 72 = 0

r) x6 − 11x5 + 10x4 + 84x3 − 93x2 − 153x + 162 = 0

s) x6 + 29x5 + 94x4 − 156x3 − 157x2 − 185x − 250 = 0

t) x8 + x7 − 11x6 − 4x5 + 17x4 − 61x3 + 21x2 + 144x − 108 = 0

u) x6 + x5 − 24x4 − 25x3 + 119x2 + 144x + 144 = 0

v) x6 + x5 − 26x4 − 29x3 + 13x2 + 100x + 300 = 0

w) x4 + x3 − 19x2 − 25x − 150 = 0

x) x4 + x3 − 31x2 − 36x − 180 = 0

y) x5 − 6x4 − 36x3 + 204x2 − 37x + 210 = 0

z) x5 − 3x4 − 45x3 + 165x2 − 46x + 168 = 0
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5.2.2 Biquadratic equations

Definition 5.4. Equation of the form

ax4 + bx2 + c = 0,

where a 6= 0 is called biquadratic.

Biquadratic equations is solved with method of introducing new variable: sett-

ing x2 = y, we have a quadratic equation

ay2 + by + c = 0.

5.2.3 Multi-quadratic equations

5.2.4 Reciprocal equations

Definition 5.5. A reciprocal equation of order n given by f(x) = 0 is one for

which

f(x) = ±xnf

(
1

x

)

.

It is clear that equation

f(x) =
n∑

k=0

akx
k = 0,

where an 6= 0, is a reciprocal equation if and only if

ar = an−r or ar = −an−r.

Such equations may be reduced to equations of lower degree by the substitu-

tions

y = x +
1

x
or x − 1

x
.
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Example. Solve the equation

2x4 − 5x3 + 6x2 − 5x + 2 = 0.

Since x = 0 is not a solution, we can divide by x2 and we get

2

(

x2 +
1

x2

)

− 5

(

x +
1

x

)

+ 6 = 0.

Using the substitution x + 1
x
, we have the quadratic equation

2y2 − 5y + 2.

The solutions are

y1 = 2, y2 =
1

2
.

In the first case we get for x

x +
1

x
= 2,

and so x = 1. If y = 1
2

the corresponding quadratic equation is

x +
1

x
=

1

2
,

however, it does not give real solutions for x.

5.3 Irrational equations

Definition 5.6. An equation with unknowns under the radical is called irrational

equation.

There are two methods that are used to solve irrational equation:

1) Raising both sides of equation to a same power.

2) Introducing new variable.
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Figure 5.4: Graph of the function 2x4 − 4x3 + 6x2 − 5x + 2
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Example. Solve the equation

√
x − 1 +

√
2x + 6 = 6.

Solution. We will rewrite the original equation a bit:

√
2x + 6 = 6 −

√
x − 1.

Square both sides we have

2x + 6 = 36 − 12
√

x − 1 + x − 1.

From this we get that
√

12x − 1 = 29 − x.

Again square both sides we obtain

144(x − 1) = (29 − x)2,

that is

x2 − 202x + 895 = 0.

one can see that this equation has two roots:

x1 = 5, x2 = 197.

After squaring, there could appear extraneous roots, so we need to check all roots.

When x = 5 we get that

√
5 − 1 +

√
2 · 5 + 6 = 6,

i.e. x = 5 is root of our initial equation. When x = 197 we have that

√
197 − 1 +

√
2 · 197 + 6 6= 6,

i.e. x = 197 is an extraneous root. Therefore, initial equation has only one

solution: x = 5.
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Figure 5.5: Graph of the function
√

x − 1 +
√

2x + 6 − 6
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Example. Solve the equation

x2 + 3 −
√

2x2 − 3x + 2 =
3

2
(x + 4).

Solution. If we repeat the approach above, then we will face some difficult and

tedious calculations. However, note that this equation can be transformed into

quadratic. To do this multiply both sides of equation by 2 and we have

2x2 + 6 − 2
√

2x2 − 3x + 2 = 3x + 12

or

2x2 − 3x + 2 − 2
√

2x2 − 3x + 2 − 8 = 0.

Now, we introduce a new variable, let y = 2x2 − 3x + 2, then equation can be

rewritten as

y2 − 2y − 8 = 0.

This equation has two solutions:

y1 = 4, y2 = −2.

Thus, we obtained set of equations:

√
2x2 − 3x + 2 = 4,

√
2x2 − 3x + 2 = −2.

First equation possesses two possible solutions

x1 =
7

2
, x2 = −2.

Second equation does not have solutions, because square root cannot be negative.

We have to check our possible solutions. If x = 7
2

then we have

(
7

2

)2

+ 3 −
√

2 ·
(

7

2

)2

− 3 · 7

2
+ 2 =

3

2

(
7

2
+ 4

)

,
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Figure 5.6: Graph of the function x2 − 3 −
√

2x2 − 3x + 2 − 3
2
(x + 4)

i. e. x = 7
2

is a solution of the original equation.

If x = −2, the we get

((−2))2 + 3 −
√

2 · (−2)2 − 3 · (−2) + 2 =
3

2
((−2) + 4) ,

so x = −2 is a solution of our original equation.

Example. Solve the equation

x2 + x +
√

x2 + x + 7 = 5.

Solution: We will introduce a new variable, let y =
√

x2 + x + 7 (The expression

under square root is positive for every x). Rewriting our equation we have

y2 − 7 + y = 5,
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that is

y2 + y − 12 = 0

which gives y1 = −4, y2 = 3. The negative value is impossible, the positive value

gives

x2 + x − 2 = 0

and we get

x1 = 1, x2 = −2.

Now, we need to check these candidates for the solution. If x = 1, then we have

12 + 1 +
√

12 + 1 + 7 = 5,

this is a solution of our initial equation. If x = −2, then we obtain

(−2)2 − 2 +
√

(−2)2 − 2 + 7 = 5,

so x = 2 is also a root of the original equation.

5.4 Exponential equations

Definition 5.7. An equation is called exponential equation if the unknown (or

unknowns) appears in the exponents of algebraic expressions.

The following theorem is our basic tool for solving exponential equation.

Theorem 5.8. Let b be a positive real number with b 6= 1. Then

bx = by implies x = y
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Figure 5.7: The graph of x2 + x +
√

x2 + x + 7 − 5
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The strategy of solving exponential equations

1). We try to transform our equation such that in the exponentiations

all bases are the same.

2). Then we try to reduce the equation to several basic exponential equations.

3). We use Theorem 5.8 to get rid of the bases.

4). We solve the resulting equations.

5). We check the solutions by inserting them into the original equation.

In the sequel we shall solve several types of exponential equations.

Example. sok sok feladat

5.5 Logarithmic equations

5.5.1 Logarithms

When rising a number to a power our goal is to compute the result of an expo-

nentiation. We also may reverse the question: which exponent to use for a base,

to get a given result? This question motivates the definition of the logarithm.

Definition 5.9. Let b be a positive real number with b 6= 1, and let c be a positive

number. The number a for which ba = c is called the logarithm of c to the base

b, and it is denoted by logb c.

Remark. It is always useful to think of a logarithm as of an exponent, namely,

the logarithm logb c is the exponent which has to be put on the base b to get the

result c.
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Theorem 5.10. (Properties of logarithms) Let b be a positive real number

with b 6= 1. Further, let x, y be positive real numbers and z a real number. The we

have the following properties of logarithms:

1) logb y = z ⇐⇒ bz = y

2) logb(xy) = logb(x) + logb(y)

3) logb

(
x

y

)

= logb x − logb y

4) logb

(
1

y

)

= − logb y

5) logb(x
z) = z logb x

6) logb 1 = 0 logb b = 1.

Remark. The statements of the above theorem may be formulated in words as

follows:

1). The logarithm of y to the base b is the exponent which has to be placed on

the base b to get the result y. (This is in fact the definition of the logarithm.)

2). The logarithm of a product is the sum of the logarithm of the factors.

3). The logarithm of a quotient is the difference between the logarithm of the

numerator and the logarithm of the denominator.

4). The logarithm of the reciprocal of a positive real number is the negative of

the logarithm of the number.

5). The logarithm of a power is the exponent times the logarithm of the base of

the power.
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6). The logarithm of 1 is 0, and the logarithm of the base itself is 1.

Remark. We mention that there is no formula for logb(x+y) and logb(x−y).

Theorem 5.11. (Changing the base of a logarithm) Let a, b, c be positive

real numbers with a 6= 1, b 6= 1 and c 6= 1. Further let x be a positive real number.

Then we have

1) logb x =
logc x

logc b

2) logb a =
1

loga b

Example. feladatok

Exercise 5.2. feladatok

5.5.2 Logarithmic equations

Definition 5.12. An equation is called logarithmic equation if the unknown

(or unknowns) or algebraic expressions containing the unknown(s) appear in loga-

rithm(s).

The following theorem is our basic tool for solving logarithmic equations.

Theorem 5.13. Let b be a positive real number with b 6= 1. Then

logb x = logb y implies x = y,

and

logb x = a implies x = ba.
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The strategy of solving logarithmic equations

1). We try to transform our equation such that the bases of

all logarithms are the same.

2). Then we try to reduce the equation to several basic logarithmic equations.

3). We use Theorem 5.13 to get rid of the logarithms.

4). We solve the resulting equations.

5). We check the solutions by inserting them into the original equation.

In the sequel we shall solve several types of logarithmic equations.

Example. sok sok feladat
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Systems of equations
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Chapter 7

Complex numbers

Definition 7.1. A complex number is an orderd pair (a, b) of real numbers, that

is the set of complex numbers C is the Descartes product R × R,

C = R × R = {(a, b) : a, b ∈ R}.

Let x = (a, b) and y = (c, d) be two complex numbers. We write x = y if a = c

and b = d and we define the sum and product of two complex numbers as

x + y = (a + c, b + d),

xy = (ac − bd, ad + bc),

respectively.

Theorem 7.2. With these definitions of addition and multiplication the set of

complex number is a field with (0, 0) and (1, 0) in the role of 0 and 1 (cf. Section

1.2)

Theorem 7.3. For any real numbers a and b we have

(a, 0) + (b, 0) = (a + b, 0),

135
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and

(a, 0)(b, 0) = (ab, 0).

The previous theorem shows that the complex numbers of the form (a, 0) have

the same arithmetic structure as the corresponding real numbers a. We will the-

refore identify the complex number (a, 0) with a. This identification dives us the

field of real numbers as a subfield of the field of complex numbers.

In the sequel we define the mysterious square root of −1.

Definition 7.4.

i = (0, 1).

Indeed, one can check that

i2 = i · i = (0, 1)(0, 1) = (−1, 0) = −1.

Theorem 7.5. If a and b are real, then

(a, b) = a + bi.

Now we introduce the conjugate of a complex number.

Definition 7.6. If a, b are real and z = a+bi, then the complex number z = a−bi is

called the conjugate of z. The numbers a and b are the real part and the imaginary

part of z, respectively.

We will shortly write

a = Re(z), b = Im(z).

The most fundamental properties of the complex conjugate are
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Theorem 7.7. If z and w are complex, then

(a) z + w = z + w,

(b) zw = z · w,

(c) z + z = 2Re(z), z − z = 2iIm(z),

(d) zz is nonnegative real number and zz is 0 if and only if z = 0.

Using the last statement we can introduce the absolute value of a complex

number. One can see that this definition is analogue to the usual absolute value

for real numbers.

Definition 7.8. If z is a complex number, its absolute value |z| is the nonnegative

square root of zz, that is

|z| =
√

zz.

Note that x is a real number if and only if x = x. Indeed, the equation

x + iy = x − iy

implies y = 0.

In the next theorem we summarize the most important properties of the abso-

lute value.

Theorem 7.9. Le z and w be complex numbers. Then we have

(a) z > 0 unless z = 0, in this case |0| = 0,

(b) |z| = |z|,
(c) |zw| = |z||w|,
(d) |Re(z)| ≤ |z|,
(e) |z + w| ≤ |z| + |w|.
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Chapter 8

Exercises for the interested reader

8.1 Identities of algebraic expressions

1). Let a, b, c ∈ R be real numbers. Prove that

(1) (a + b + c)3 − (a3 + b3 + c3) = 3(b + c)(c + a)(a + b),

(2) a3 + b3 + c3 − 3abc = 1
2
(a + b + c) [(a − b)2 + (b − c)2 + (c − a)2].

2). Let a, b, c ∈ R be pairwise distinct non-zero real numbers. Prove that

(1) a
(a−b)(a−c)

+ b
(b−c)(b−a)

+ c
(c−a)(c−b)

= 0

(2) a2

(a−b)(a−c)
+ b2

(b−c)(b−a)
+ c2

(c−a)(c−b)
= 1

(3) a3

(a−b)(a−c)
+ b3

(b−c)(b−a)
+ c3

(c−a)(c−b)
= a + b + c

(4) a4

(a−b)(a−c)
+ b4

(b−c)(b−a)
+ c4

(c−a)(c−b)
= a2 + b2 + c2 + ab + bc + ac

(5) a−1

(a−b)(a−c)
+ b−1

(b−c)(b−a)
+ c−1

(c−a)(c−b)
= 1

abc

(6) a−2

(a−b)(a−c)
+ b−2

(b−c)(b−a)
+ c−2

(c−a)(c−b)
= ab+bc+ac

a2b2c2

3). Let a, b, c, d ∈ R be pairwise distinct non-zero real numbers. Prove that
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(1) 1
(a−b)(a−c)

+ 1
(b−a)(b−c)

+ 1
(c−a)(c−b)

= 0

(2) 1
(a−b)(a−c)(a−d)

+ 1
(b−a)(b−c)(b−d)

+ 1
(c−a)(c−b)(c−d)

+ 1
(d−a)(d−b)(d−c)

= 0

(3) Generalize the above statements

4). Let a, b, c, d ∈ R be real numbers, such that the below fractions have non-zero

denominators. Prove that

(1) b
a(a+b)

+ c
(a+b)(a+b+c)

= b+c
a(a+b+c)

(2) b
a(a+b)

+ c
(a+b)(a+b+c)

+ d
(a+b+c)(a+b+c+d)

= b+c+d
a(a+b+c+d)

(3) Generalize the above statements

5). Let a, b, c, d ∈ R be real numbers, such that the expressions in the following

exercises have sense.

(1) If a + b = 1 then compute the value of the expression

a3 + b3 + 3(a3b + ab3) + 6(a3b2 + a2b3)

(2) If a, d ∈ Z then prove that the sum

a2 + 2(a + d)2 + 3(a + 2d)2 + 4(a + 3d)2

can be written as the sum of two perfect squares.

(3) Prove that if a + b + c = 0 then

a3 + a2c + b2c − abc + b3 = 0.

(4) Prove that if the difference of two integers is 2 then the difference of

their cubes can be written as the sum of three perfect squares.
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6). Compute the value of the expression

(
a − b

c
+

b − c

a
+

c − a

b

)

·
(

c

a − b
+

a

b − c
+

b

c − a

)

provided that

(1) a + b + c = 0,

(2) |c| = |a − b|.

7). Let a, b, c ∈ R

8). Let a, b, c ∈ R be real numbers. Prove that if (a + b + c)3 = (a3 + b3 + c3)

then for every n ∈ N we have

(a + b + c)2n+1 = a2n+1 + b2n+1 + c2n+1.

9). Let a, b, c ∈ R be real numbers, such that the expressions below have sense.

Prove that if

1

a
+

1

b
+

1

c
=

1

a + b + c

then for every n ∈ N we have

1

a2n+1
+

1

b2n+1
+

1

c2n+1
=

1

a2n+1 + b2n+1 + c2n+1

10). Let a, b, c ∈ R be real numbers. Prove that if a3 + b3 + c3 = 3abc then either

a + b + c = 0 or a = b = c.

Ide meg a Stamate Stolanbol
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8.2 Inequalities of algebraic expressions

1). Let a, b, c ∈ R be positive real numbers. Prove that

(1) (a + b)(a + c)(c + a) ≥ 8abc,

(2) (a2 + b2)c + (b2 + c2)a + (c2 + a2)b ≥ 6abc,

(3) 2(a3 + b3 + c3) ≥ (a + b)ab + (b + c)bc + (c + a)ca.

2). Let a, b, c ∈ R be positive real numbers with a + b + c = 1. Prove that

1

a
+

1

b
+

1

c
≥ 9.

Under what conditions do we have equality above?

3). Let a, b ∈ R be positive real numbers with a + b = 2. Prove that

a4 + b4 ≥ 2.

4). Let a, b ∈ R be positive real numbers, and m,n ∈ N be natural numbers of

the same type of parity. Prove that

(1)
am + bm

2
· an + bn

2
≤ am+n + bm+n

2

(2)
a + b

2
· a2 + b2

2
· a3 + b3

2
≤ a6 + b6

2

5). Let a, b, c ∈ R be positive real numbers. Prove that

a + b + c ≤ a4 + b4 + c4

abc

6). Let a, b, c, d ∈ R be positive real numbers. Prove that

√

(a + c)(b + d) ≤
√

ab +
√

cd.
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7). Let a, b, c ∈ R be positive real numbers. Prove that

ab

a + c
+

bc

b + c
+

ca

c + a
=

a + b + c

2
.

Under what conditions do we have equality above?

8). Prove that

(1) ab + ac + bc ≤ a2 + b2 + c2 for any a, b, c ∈ R

(2) ab + ac + ad + bc + bd + cd ≤ 3
2
(a2 + b2 + c2 + d2) for any a, b, c, d ∈ R,

(3)
n∑

i=1

n∑

j=i+1

aiaj ≤ n−1
2

n∑

i=1

a2
i .

9). Let a1

b1
, a2

b2
, . . . , an

bn
be rational numbers with ai, bi ∈ Z, bi > 0 for i =

1, 2, . . . , n. Prove that

min
1≤i≤n

ai

bi

≤ a1 + a2 + · · · + an

b1 + b2 + · · · + bn

≤ max
1≤i≤n

ai

bi

10). Ide meg kozepertekes feladokat, sokat.
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Chapter 9

Results of the Exercises

9.1 Chapter 1

Results of Exercise 1.1: The listed elements belong to the corresponding inter-

vals, and those elements form the list −7,−5.3,−5,−4.99,−π,−1, 0, 1,
√

3, 3.99,

4, 4.02, 5 which are not listed, do not belong to the corresponding interval.

a) − 7,−5.3 ∈ ]−∞,−5[

b) − 7,−5.3,−5 ∈ ]−∞,−5]

c) − 4.99,−π,−1, 0, 1,
√

3, 3.99 ∈ ]−5, 4[

d) − 5,−4.99,−π,−1, 0, 1,
√

3, 3.99 ∈ [−5, 4[

e) − 4.99,−π,−1, 0, 1,
√

3, 3.99, 4 ∈ ]−5, 4]

f) − 5,−4.99,−π,−1, 0, 1,
√

3, 3.99, 4 ∈ [−5, 4]

g) − 5,−4.99,−π,−1, 0, 1,
√

3, 3.99, 4, 4.02, 5 ∈ [−5,∞[

h) − 4.99,−π,−1, 0, 1,
√

3, 3.99, 4, 4.02, 5 ∈ ]−5,∞[

f)
√

3, 3.99, 4, 4.02 ∈
[√

3, 5
[
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We leave for the students to draw the graph representing the above intervals on a

real number line.

Results of Exercise 1.2:

a) x ∈ ]2, 7[ b) x ∈ [3,∞[ c) x ∈ ]−∞, 3]

d) x ∈ [5, 8[ e) x ∈ ]5, 11] f) x ∈ ]−∞, 7[

g) x ∈ ]−1,∞[ h) x ∈ ]−1,∞[ f) x ∈ [1, 3]

Results of Exercise 1.3

a) 213 b) 22 c) 26

d) 212 e) 24 f) 1

g) 32 h) 332 i) 310

j) 23 · 32 · 50 · 72 k) 24 l) 9a4b8c6

m) − 12a3b5c9 n) 9a4b o)
9a

8b2c
=

9

8
ab−2c−1

p) − 1

3
a14b4c q) 10a3b2d−3 r) a5b2c2

s) − 1

8
x−8y17z13 t) 6x11y12z7 u) a8b2

Results of Exercise 1.4

a)
6
√

2 b)
10
√

3 c) 3
√

a

d)
12
√

a2b e) 8
√

a f)
24
√

a23

g) 8

√

x3

y3
h)

12
√

a7b9 i)
6

√

a2

b

j) 30

√

x13y7 k) 24

√

x9

y7
l) 6

√
x

m)
24
√

a17 n) a4 o) 4
√

a

p)
4
√

a5 q)
75
√

a57 r)
24
√

a35
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Results of Exercise 1.5:

a) ab b) a−1b c) a2b−
1

2

d) a2b−3 e) ab f) a−2b−
4

5

g) a
11

3 b
11

2 h) a− 4

3 b i) a
80

21 b
8

15

j) 1 k) a
3

5 b
15

4 l) 1

9.2 Chapter 2

Results of Exercise 2.1:

a) 2x2 − 2xy3 + 2xy + 3x + y2 + y b) 3x3 − 4x2y + 4xy2 + 5y3

c) 2x5 − 7x4y + 8x3y2 − 5x2y3 − 12xy4 + 5y5 d) − x2 + 4xy3 − 13xy − 6x + y2 − 2y

e) x4 − 2x3y3 + 2x3y + 3x3 + 6x2y4 − 14x2y2 − 8x2y − 2xy5 + 5xy3 + y3

f) 2x3y3 − 8x3y − 3x3 − 6x2y4 + 25x2y2 + 8x2y + 2xy5 − 11xy3 + y4 − y3

Results of Exercise 2.2:

a) x3 − x2 + 7 b) 2x3 − 5x2 + 5x + 5

c) x5 − 5x4 + 11x3 − 8x2 − 9x + 10 d) 3x2 − 3x + 6

e) x4 − 3x3 + 4x2 − 6x + 4 f) x5 − x4 + 2x3 + 5x2 + 14

g) − 2x5 + 3x4 − 11x3 − 9x2 − 14x − 30 h) x3 + 9

i) x5 − 4x4 + 8x3 − 4x2 − 15x + 14

j) x7 − 5x6 + 13x5 − 18x4 + 13x3 − 6x2 − 18x + 20

Results of Exercise 2.3:

a) 4xy3 b) 2y4z c)
1

2
x2y2z

d)
3

5
ab4 e) 2a2b4c2 f)

4

5
a2c5d2
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Results of Exercise 2.4 Denoting the quotient by q(x) and the remainder by
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r(x) the results of the divisions are:

a) q(x) = x + 3, r(x) := −2x − 1

b) q(x) = x3 − 2x2 + x + 5, r(x) = −3

c) q(x) = x3 − 2x − 4, r(x) = −12x + 10

d) q(x) = x3 − x − 1, r(x) = −5x + 3

e) q(x) = x3 + 2x + 1, r(x) = 0

f) q(x) = x4 + 2x3 − 8x − 16, r(x) = 0

g) q(x) = x3 + x2 − x − 7, r(x) = −20x + 30

h) q(x) = x3 + 7x2 + 28x + 126, r(x) = 574x − 250

i q(x) = x3 + 2x2 − 4, r(x) = −19x + 14

j) q(x) = x + 1, r(x) = −3x3 + 5x2 − 2x − 1

k) q(x) = x5 + 4x4 + 2x3 − 3x2 − x − 4, r(x) = 6

l) q(x) = x5 + 2x4 − 4x3 − x2 + 3x − 6, r(x) = 16

m) q(x) = x5 + 5x4 + 8x3 + 11x2 + 24x + 45, r(x) = 100

n) q(x) = x5 + x4 − 4x3 + 3x2 − 4x + 5, r(x) = 0

o) q(x) = x5 − 2x3 + x2 − x, r(x) = 10

p) q(x) = x4 + 3x3 − x2 − 2x + 1, r(x) = −5x + 11

q) q(x) = x5 + x4 − 3x3 − 4x2 − 4x − 1, r(x) = −3

r) q(x) = x5 − x4 − 3x3 + 2x2 − 2x + 5, r(x) = −7

s) q(x) = x5 + 2x4 − x2 − 2x − 1, r(x) = −4

t) q(x) = x5 − 2x4 − x2 + 2x − 1, r(x) = 0

u) q(x) = x5 + 3x4 + 5x3 + 14x2 + 42x + 129, r(x) = 385

v) q(x) = x5 − 3x4 + 5x3 − 16x2 + 48x − 141, r(x) = 421

w) q(x) = x4 + x3 − 2x2 − 2x − 4, r(x) = −3x − 6

x) q(x) = x4 − 3x2 − x − 3, r(x) = 2x − 5

y) q(x) = x4 − x3 − 2x2 − 2, r(x) = 5x − 4

z) q(x) = x4 − 2x3 + x2 − 5x + 11, r(x) = −24x + 9
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Results of Exercise 2.5 Denoting the quotient by q(x) and the remainder by
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r(x) the results of the divisions are:

a) q(x) = x4 − 3x3 + 4x2 − 7x + 9, r(x) = −14

b) q(x) = x4 − 3x3 − 3x2 − 8x − 14, r(x) = −31

c) q(x) = x4 − 7x3 + 17x2 − 36x + 74, r(x) = −151

d) q(x) = x6 − 4x5 − 2x4 − 6x3 − 7x2 − 7x − 4, r(x) = −6

e) q(x) = x6 − 6x5 + 8x4 − 12x3 + 11x2 − 11x + 14, r(x) = −16

f) q(x) = x6 − 3x5 − 4x4 − 12x3 − 25x2 − 50x − 97, r(x) = −196

g) q(x) = x6 − 7x5 + 16x4 − 36x3 + 71x2 − 142x + 287, r(x) = −576

h) q(x) = x5 + x4 + x3 + x2 + x + 1, r(x) = −1

i) q(x) = x5 + 2x4 + 4x3 + 8x2 + 16x + 32 r(x) = 62

j) q(x) = x5 − 2x4 + 4x3 − 8x2 + 16x − 32, r(x) = 62

k) q(x) = x5 + 4x4 + 2x3 − 3x2 − x − 4, r(x) = 6

l) q(x) = x5 + 2x4 − 4x3 − x2 + 3x − 6, r(x) = 16

m) q(x) = x5 + 5x4 + 8x3 + 11x2 + 24x + 45, r(x) = 100

n) q(x) = x5 + x4 − 4x3 + 3x2 − 4x + 5, r(x) = 0

o) q(x) = x5 − 2 ∗ x3 + x2 − x, r(x) = 10

p) q(x) = x6 − x5 + x2 − x, r(x) = 0

q) q(x) = x5 + x4 − 3x3 − 4x2 − 4x − 1, r(x) = −3

r) q(x) = x5 − x4 − 3x3 + 2x2 − 2x + 5, r(x) = −7

s) q(x) = x5 + 2x4 − x2 − 2x − 1, r(x) = −4

t) q(x) = x5 − 2x4 − x2 + 2x − 1, r(x) = 0

u) q(x) = x5 + 3x4 + 5x3 + 14x2 + 42x + 129, r(x) = 385

v) q(x) = x5 − 3x4 + 5x3 − 16x2 + 48x − 141, r(x) = 421

w) q(x) = x6 + 2x5 − 3x3 + 4x2 − 9x + 6, r(x) = −2

x) q(x) = x6 + 4x5 + 6x4 + 3x3 + 4x2 − x − 4, r(x) = 0

y) q(x) = x6 + x5 − 3x3 + 7x2 − 19x + 35, r(x) = −66

z) q(x) = x6 + 2x5 − 3x3 + 4x2 − 9x + 6, r(x) = 0
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Results of Exercise 2.6 Denoting the quotient by q(x) and the remainder (when



9.2. CHAPTER 2 153

it is non-zero) by r(x) the results of the divisions are:

a) no q(x) = x5 + 6x4 + x3 − 29x2 − 62x − 113, r(x) = −196

b) yes q(x) = x5 + 2x4 − 15x3 − x2 − 2x + 15

c) yes q(x) = x5 + 5x4 − 6x3 − 37x2 − 41x − 30

d) no q(x) = x5 + 3x4 − 14x3 − 17x2 + 13x − 2, r(x) = 32

e) no q(x) = x5 + x4 − 14x3 + 11x2 − 37x + 122, r(x) = −336

f) yes q(x) = x5 + 7x4 + 10x3 − x2 − 7x − 10

g) no q(x) = x5 − 11x3 + 13x2 − 56x + 235, r(x) = −910

h) yes q(x) = x5 − x4 − 6x3 − x2 + x + 6

i) yes q(x) = x5 + 3x4 − 6x3 − 25x2 − 27x − 18

j) no q(x) = x5 + 3x4 − 3x3 − 16x2 − 33x − 57, r(x) = −105x − 210

k) yes q(x) = x5 + 3x4 + 2x3 − x2 − 3x − 2

l) yes q(x) = x6 + 7x5 + 22x4 + 43x3 + 49x2 + 34x + 12

m) yes q(x) = x6 + 5x5 + 10x4 + 11x3 − 5x2 − 10x − 12

n) yes q(x) = x5 + 6x4 + 16x3 + 27x2 + 22x + 12

o) no q(x) = x6 + 8x5 + 31x4 + 83x3 + 172x2 + 329x + 636, r(x) = 1260

p) no q(x) = x6 + 4x5 + 7x4 + 7x3 − 8x2 + x − 24, r(x) = 36

q) no q(x) = x5 + 6x4 + 19x3 + 45x2 + 82x + 165, r(x) = 306x + 648

r) no q(x) = x6 + 9x5 + 42x4 + 147x3 + 447x2 + 1326x + 3956, r(x) = 11856

s) yes q(x) = x6 + 3x5 + 6x4 + 3x3 − 3x2 − 6x − 4

t) no q(x) = x5 + 6x4 + 24x3 + 75x2 + 222x + 660, r(x) = 1976x + 5928

u) no q(x) = x7 − 11x5 − x4 + 12x3 + 11x2 + 48x − 12, r(x) = 48

v) no q(x) = x7 + 2x6 − 9x5 − 21x4 − 10x3 + 13x2 + 72x + 108, r(x) = 144

w) no q(x) = x6 + x5 − 10x4 − 11x3 + x2 + 12x + 60, r(x) = 48x + 96

x) yes q(x) = x6 + x5 − 7x4 − 8x3 − 17x2 − 9x − 9

y) yes q(x) = x6 + x5 − 2x4 − 3x3 − 7x2 − 4x − 4

z) yes q(x) = x6 − 4x5 + 3x4 − 3x3 + 8x2 + x + 6
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Results of Exercise 2.7:

a) 144 b) 0 c) 0

d) 18564 e) 0 f) 0

g) 48 h) 36 i) 64

j) − 80 k) 70 l) − 110

m) 0 n) 0 o) 1120

Results of Exercise 2.8

a) 5(x2y + 3x − 1) b) 8(a − b + 2) c) 4x2(2x − 3y2 + z)

d) a2b(a + b2 + 1) e) a(x + y)(1 − b) f) 2m2(m − 2m3n+)

g) x2y(xy − 5 + x2y) h)) 2a(b2 − 2)(2a − b) i) (x − 1)(a − b − 7)

j) (x + 5)(x − 5) k) (x + 3y)(x − 3y) l (x − 2)(x + 2)(x2 + 4)

m) (2a − 3b)2 n) (a − 2b)3 o) (5a + 2b)(25a2 − 10ab + 4b2)

p) (9a + 4b)(9a − 4b) q) (5x + 6y)(5x − 12y) r) (82x − 15y)(58x − 45y)

s) (a + b)(c + d) t) (a + b)(c − d) u) (a2 + 2)(a + 2)

v) (a + b)2(a − b) w) (x − z)(x2 + 2z2) x) (a + b)(a − b)(a2 + ab + b2)

y) (x − 1)(x − 3) z) (x − 3)(x + 2) ω) (x + 1)(x − 1)(x + 2)(x − 2)
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Results of Exercise 2.9

a) 3x(1 + 3x2y3)2 b) (x − y + z)(xy − 10)(xy + 10)

c) (3a + 2)(3a − 2)(a2 + 5) d) (a − 1)(a + 1)(b − 1)(b + 1)(a2 + 1)(b2 + 1)

e) 7(4x + y)(x2 − xy + y2) f) (x2 + x + 1)(x2 − x + 1)(x4 − x2 + 1)

g) 2(x2 + xy + y2)2 h) (x + a + b)(x + a − b)(x − a + b)(x − a − b)

i) x(1 + x)(1 − x)(x − 3) j) (x − 1)2(x − 4)(x2 + x + 1)

k) (x + y)(x + y − z) l) (ab − cd)(bc − ad)(ac − bd)

m) (x2y2 + x4 − y4)(x2y2 − x4 + y4) n) (a2 + pb2)(c2 + pd2)

o) (c + b)(c − b)(a − c) p) (x + 2)(x + 4)(x2 + 5x + 8)

q) a2c2(b + c)(b − c)(a − c) r) (ab − cd + ac + bd)(ab − cd − ac − bd)

s) x(x2 + x + 1)2 t) (3x − 1)(3x + 1)(x2 + x + 1)2

u) (2x − 3y)(4x2 − 6xy + 9y2)

v) (cx + by)(ax + cy)(bx + ay) − (bx + cy)(cx + ay)(ax + by)

v) xy(x − y)(a − b)(a − c)(c − b)

w) (x − 1)(x + 2)(x2 + x + 5)

x) (1 − ab)(1 − bc)(1 − ca)

y) x(x + 1)2(x2 + 1)

z) (a − b)(a − c)(b − c)(a + b + c)
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Results of Exercise 2.10

a)
5x

y
b)

y6z3

2x2w2

c)
−1

2x2
d)

1

−4x

e)
1

2(x − 3)
f)

5(x − 1)

x + 1

g)
3x2 + xy

xy + 3y2
h)

1

x

i)
5

x + 4
j)

7(x2 − y2)

9y2

Results of Exercise 2.11

a)
3a

5a3b7
and

5b6

5a3b7

b)
x + 1

a3(x + 1)2
and

a

a3(x + 1)2

c)
(x + 3)(3x + 2)

(2x − 1)(3x + 2)
and

(x − 1)(2x − 1)

(2x − 1)(3x + 2)

d)
3a3

3a3(x + 1)
,

3(x + 1)

3a3(x + 1)
and

a2(x + 1)

3a3(x + 1)
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Results of Exercise 2.12

a) ??

b) ??

c)
a + 3

a − 3
d) (a + b)(x + 1)

e)
xy(x + y)

y − 1

f)
x + 1

x + y

g)
1

a2

h) a + b

i)
1

2ab

j) 5

k)
b

b − a

l) x − y

m)
1

ab

n) x + 1

o) 1

p) − x

q) 0

Results of Exercise 2.13

a)

√
7

7
b)

3
√

25

5
c)

k
√

ak−1

a
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Results of Exercise 2.14

a)

√
5 +

√
2

3
b) − 1 +

√
5

4
c)

d) sqrt5 −
√

2 e)
√

6 − 1 f)

g)
3
√

25 + 3
√

10 + 3
√

4

3
h)

3
√

49 + 3
√

28 + 3
√

16

4
i)

j)
4
√

125 + 4
√

50 + 4
√

20 + 4
√

8

3
k)

5
√

625 + 5
√

250 + 5
√

100 + 5
√

40 + 5
√

16

3
l)

m)
( 4
√

5 − 4
√

2)(
√

5 +
√

2)

3
n) o)

p) q) r)

s) t) u)

v) w) x)

y) z) α

β) γ) δ)

Results of Exercise 2.15

a) 2 b) 4

c) 4 d)

e)
√

2 f) 4

g) 6 h)

i) j)

k)

l)

m)

n)
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Results of Exercise 2.16

a)

b)

c)

d)
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9.3 Chapter 3

Results of Exercise 3.1

a) S = {4}

b) S = {4}

c) S = {3}

d) S = {4}

e) S = Q

f) S = ∅

g) S = {4}

h) S = ∅

i S =

{
17

9

}

j) S = {−2}

k) S =

{
7

8

}

l) S = {−2}

m) S = ∅

n) S =

{
1

9

}

o) S = {3}

p) S =

{

−271

10

}

q) S = {5}

r) S = {2}

s) S =

{

−3,
2

5

}

t) S = {4}

u) S =

{

−2,−3,
1

2

}
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Results of Exercise 3.2

a) S = {−1, 1} b) S = {−5, 5}

c) S = {−
√

2,
√

2} d) S = ∅

e) S = {0, 3} f) S = {−5, 0}

g) S = {1} h) S = {1, 3}

i) S = {1, 4} j) S = {3, 4}

k) S = {−3, 1} l) S = {−6, 1}

m) S = {−1, 6} n) S = {−3}

o) S = ∅ p) S = ∅

q) S =

{
1

2
, 1

}

r) S =

{

−1

2
,
2

3

}

s) S =

{

−3

5
,
4

3

}

t) S =

{

−5

2
,−2

}

u) S =

{

−1 −
√

17

2
,
−1 +

√
17

2

}

v) S = ∅

w) S = ∅ x) S =

{
1

2

}

y) S =

{

−2

3

}

z) S =

{
7

2

}
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Results of Exercise 3.3

a) S =

{−3

2
, 2

}

b) S =
{

−
√

5,
√

5
}

c) S = {−3,−4}

d) S = {−5, 3}

e) S = {8}

f) S = ∅

g) S = {3}

h) S =

{
6

5
,
12

5

}

i S = {−1, 1}

j) S = ∅

9.4 Chapter 4

Results of Exercise 4.2:

a) x ∈ ]−∞, 1[ ∪ ]3,∞[ b) x ∈ ]−∞,−2] ∪ [−1,∞[

c) x ∈ ]−3,−2[ d) x ∈ [−3, 2]

e) x ∈ ]−∞,−2] ∪ [2,∞[ f) x ∈ ]−3, 3[

g) x ∈ R h) x = 3

i) x ∈ R \ {−2} j) x ∈ ∅

k) x ∈ ∅ l) x ∈ R

m) x ∈ R n) x ∈ R

o) x ∈ ∅ p) x ∈ R
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9.5 Chapter 5

Results of Exercise 5.1:

a) x1 = −2, x2 = −1, x3 = 3

b) x1 = −2, x2 = 1, x3 = 2, x4 = 3

c) x1 = −4, x2 = −2, x3 = 1, x4 = 2, x5 = 3

d) x1 = 2, x2 = 2, x3 = −1, x4 = −5

e) x1 = −5, x2 = −3, x3 = −2, x4 = −2, x5 = 4

f) x1 = −5, x2 = −2, x3 = 2, x4 = 3

g) x1 = −4, x2 = −2, x3 = 3, x4 = 5

h) x1 = −3, x2 = 2, x3 = 4, x4 = 5, x5 = −1 −
√

3, x6 = −1 +
√

3

i) x1 = −4, x2 = −3, x3 = −1, x4 = 2, x5 = 5

j) x1 = −5, x2 = 1, x3 = 2, x4 = 3, x5 =
−1 +

√
5

2
, x6 =

−1 −
√

5

2

k) x1 = −1, x2 = −2, x3 = −4, x4 = −8

l) x1 = −1, x2 = 2, x3 = −4, x4 = 8, x5 =
−3 −

√
5

2
, x6 =

−3 +
√

5

2

m) x1 = −4, x2 = −3, x3 = 1, x4 = 1, x5 = 2, x6 = 5

n) x1 = −4, x2 = −3, x3 = −2, x4 = 2, x5 = 3

o) x1 = −5, x2 = −2, x3 = −2, x4 = −1, x5 = 1, x6 = 5

p) x1 = −2, x2 = 2, x3 = 3, x4 = 3

q) x1 = −3, x2 = −3, x3 = −2, x4 = −1, x5 = 2, x6 = −
√

2, x7 =
√

2

r) x1 = −2, x2 = 1, x3 = 3, x4 = 9, x5 = −
√

3, x6 =
√

3

s) x1 = −25, x2 = −5, x3 = −1, x4 = 2

t) x1 = −3, x2 = −2, x3 = −2, x4 = 1, x5 = 1, x6 = 3

u) x1 = −4, x2 = −3, x3 = 3, x4 = 4

v) x1 = −5, x2 = −2, x3 = 2, x4 = 5

w) x1 = −5, x2 = 5

x) x1 = −6, x2 = 6

y) x1 = −6, x2 = 5, x3 = 7

z) x1 = −7, x2 = 4, x3 = 6
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